Home
Class 12
MATHS
If x=a sec^(2)theta and y=a tan^(3) the...

If `x=a sec^(2)theta and y=a tan^(3) theta, " find " (dy)/(dx)" at " theta=(pi)/(4)` .

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=asec^3theta and y=atan^3theta , find (dy)/(dx) at theta=pi/3dot

If x=acos^(3)theta" and "y=bsin^(3)theta , then find (d^(2)y)/(dx^(2)) at theta=(pi)/(4).

If x=a cos^(4)theta, y=a sin^(4)theta then the value of (dy)/(dx) at theta=(3pi)/(4) is -

If x=-a cos theta and y= a sin theta , find (dy)/(dx) .

sec^(3)theta - 2tan^(2)theta =2

If x=a(theta+sin theta) and y=a(1-costheta) , find (d^2y)/(dx^2)"at"theta=pi/2

If x=2cos theta -cos2 theta and y=2sin theta -sin2 theta , find (d^2y)/(dx^2) at theta=pi/2 .

If x=a cos theta, y=a sin theta , then the value of (dy)/(dx) is -

Find the equation of normal at the specified point on each of the following curves : x= 3 cos theta- cos^(2) theta, y = 3 sin theta - sin^(3)theta " at " theta=(pi)/(4)

If x=sqrt(3)(3 sin theta+sin 3theta), y=sqrt(3)(3 sin theta+cos 3 theta) , find (d^(2)y)/(dx^(2)) at theta=(pi)/(3) .