Home
Class 12
MATHS
Find (dy)/(dx), when y=x^(x^(x^(x)))...

Find `(dy)/(dx)`, when `y=x^(x^(x^(x)))`

Text Solution

Verified by Experts

The correct Answer is:
`x^(x^(x^(x)))*x^(x) [ (1)/(x)+log x(1+log x)]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y=x^(x)+x^(2)

Find (dy)/(dx) , when y=log|x|

Find (dy)/(dx) when : x^(y)=y^(x)

Find (dy)/(dx) , when y=2^(x)x^(5)

Find (dy)/(dx) , when y=5^(x) *x^(5)

Find (dy)/(dx) when : y^(y)=sin x

Find (dy)/(dx) when : xy=tan(x+y)

Find (dy)/(dx) , when y= log f(x)

Find (dy)/(dx) , when x^(y)+y^(x)=1

Find (dy)/(dx) when : x^(y)*y^(x)=1