Home
Class 12
MATHS
Find (dy)/(du), when y=(u^(3)+3^(u))"...

Find `(dy)/(du)`, when `y=(u^(3)+3^(u))"cosec"u`

Text Solution

Verified by Experts

The correct Answer is:
`"cosec"u[3u^(2)+3^(u)log3-(u^(3)+3^(u))cot u]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivatives of the following functions w.r.t x (or u): (u^(3)+3^(u))"cosecu"

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y="cosec"^(3)x assuming "cosec"x=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx) : y=log(ax+b)^(3) assuming ax+b=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y=m^(ax^(2)+bx+c) assuming ax^(2)+bx+c=u .

In each of the following cases find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dx): y=sqrt(tan^(-1)x) assuming tan^(-1)x=u .

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=log_(2)(sin x^(3))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=cos^(-1) sqrt(2x-3)

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y= sin sqrt(x^(2)+a^(2))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=e^(sqrt(cos x))

Find (dy)/(dx) using the rule (dy)/(dx)=(dy)/(du)*(du)/(dv)*(dv)/(dx): y=(1)/(sqrt(log sec x))