Home
Class 12
MATHS
Find (dy)/(dx), when y=x^(x)+x^(2)...

Find `(dy)/(dx)`, when `y=x^(x)+x^(2)`

Text Solution

Verified by Experts

The correct Answer is:
`x^(x)(1+logx)+2x`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y=5^(x) *x^(5)

Find (dy)/(dx) , when y=log|x|

Find (dy)/(dx) , when y=2^(x)x^(5)

Find (dy)/(dx) , when y=x^(x^(x^(x)))

Find (dy)/(dx) when : x^(y)=y^(x)

Find (dy)/(dx) when : y=x^(3)* sqrt((x^(2)+4)/(x^(2)+3))

Find (dy)/(dx) when : y= (x^(3)* sqrt(x^(2)-12))/( 3 sqrt(20-3x))" when " x=4

Find (dy)/(dx) , when y= x^(x) sin sqrt(x)

Find (dy)/(dx) , when x^(y)+y^(x)=1

Find (dy)/(dx) when : x^(y)*y^(x)=1