Home
Class 12
MATHS
Find (dy)/(dx), when y=x^(cosx)+(cosx...

Find `(dy)/(dx)`, when `y=x^(cosx)+(cosx)^(sin x)`

Text Solution

Verified by Experts

The correct Answer is:
`x^(cosx)[(1)/(x)cos x-sin x*log x]+(cosx)^(sinx)[cosx log(cosx)-sin x tan x]`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when y=log|x|

Find (dy)/(dx) , when y=log_(cosx)x

Find (dy)/(dx) , when y= sin 4xcos 7x

Find (dy)/(dx) , when y=x^(x^(x^(x)))

Find (dy)/(dx) when : x^(y)=y^(x)

Find (dy)/(dx) , when y=2^(x)x^(5)

Find (dy)/(dx) , when y=e^(sin phi(x))

Find (dy)/(dx) , when y=x^(x)+x^(2)

Find (dy)/(dx) when : y^(y)=sin x

Find (dy)/(dx) , when y= (sin x)^(log x)