Home
Class 12
MATHS
Find (dy)/(dx), when x^(y)*y^(x)=e^(x...

Find `(dy)/(dx)`, when `x^(y)*y^(x)=e^(xy)-3x`

Text Solution

Verified by Experts

The correct Answer is:
`(y^(e^(xy))-3-(uy)/(x)-u log y)/(u log x+(ux)/(y)-xe^(xy))` where ` u=x^(y)*y^(x)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : x^(y)*y^(x)=1

Find (dy)/(dx) , when x^(y)+y^(x)=1

Find (dy)/(dx) when : x^(y)+y^(x)=a

Find (dy)/(dx) when : xy=tan(x+y)

Find (dy)/(dx) when : x^(3)y^(4)=(x+y)^(7)

Find (dy)/(dx) when : y^(y)=sin x

Find (dy)/(dx) when : x^(sin y)+y^(sinx)=1

Find (dy)/(dx) , when y=5^(x) *x^(5)

Find (dy)/(dx) , when y=x^(x)+x^(2)

Find (dy)/(dx) , when y=2^(x)x^(5)