Home
Class 12
MATHS
If x^(m)*y^(n)=(x+y)^(m+n), show that (d...

If `x^(m)*y^(n)=(x+y)^(m+n)`, show that `(dy)/(dx)=(y)/(x)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx)=x+y

(dy)/(dx)=(y-x)/(x+y)

If x^m y^n=(x+y)^(m+n),p rov et h a t(dy)/(dx)=y/xdot

If y=e^((y)/(x)) show that, (dy)/(dx)=(y^(2))/(x(y-x)) .

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If x=y^(y^(y^(...oo))) , then show that, (dy)/(dx)=(y(1-x logy))/(x^(2)) .

Find the differential coefficient of the following: If x^py^q=(x+y)^(p+q) then show that dy/dx=y/x

If y = x^(5) show that x(dy)/(dx)-5y = 0 .

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .