Home
Class 12
MATHS
Find the derivatives of "cos"^(-1)(1-...

Find the derivatives of
`"cos"^(-1)(1-x^(2))/(1+x^(2)) (0 lt x lt 1)`

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(1+x^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of cos^(-1)""(1-x^(2))/(1+x^(2))" w.r.t. "sin^(-1)""(2x)/(1+x^(2)).

Find (dy)/(dx) in the following : y= cos^(-1) ((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

Find the derivatives w.r.t. x : cos^(-1)x+cos^(-1)sqrt(1-x^(2))

Find the derivatives w.r.t. x : cot^(-1) sqrt((1-sinx)/(1+sinx))(0 lt x lt (pi)/(2))

Find the derivatives of "tan"^(-1) sqrt((1+cos2x)/(1-cos2x))

Find (dy)/(dx) in the following : y= sin^(-1)((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

Integrate : int "tan"^(-1)(2x)/(1-x^(2))dx(-1 lt x lt 1)

Prove that cos^(-1)((1-x^(2n))/(1+x^(2n)))=2tan^(-1)x^n ,0 lt x llt oo

Find (dy)/(dx) in the following : y= cos^(-1) ((2x)/(1+x^(2))), -1 lt x lt1 .

Find the value of x for which sin^(-1) (cos^(-1) x) lt 1 and cos^(-1) (cos^(-1) x) lt 1