Home
Class 12
MATHS
If x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^...

If `x=sqrt( a^(sin^(-1)t)) and y=sqrt( a^(cos^(-1)t))` find dy/dx

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt(a^(sin^(-1)t)" and "y=sqrt(a^(cos^(-1)t) show that (dy)/(dx)=-(y)/(x) .

If x = sqrt(a^(sin^(-1)t)) and y= sqrt(a^(cos^(-1)t) show that (dy)/(dx)= -y/x .

If x=sqrt(a^(sin^(-1)t)), y= sqrt(a^(cos^(-1)t)) , show that (dy)/(dx)= -(y)/(x) .

If x^2 = a^(sin^(-1)t) and y^2= a^(cos^(-1)t) then show that (dy)/(dx)=-y/x .

If y=cos(sin^(-1)x) , then find dy/dx

y=sqrt(tansqrt(x)) find dy/dx

y=sin^(-1)[sqrt(x-a x)-sqrt(a-a x)] then find dy/dx

If x=sin t sqrt(cos2t) and y=cos tsqrt(sin2t) , find (dy)/(dx) at t=(pi)/(4) .

y = sin^(-1)(1/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2)) . find dy/dx .

If x=a(cos t+t sin t) and y=a(sin t-t cos t)," find "(dy)/(dx) " at " t=(3pi)/(4)