Home
Class 12
MATHS
Find the derivative of "sin"^(-1) (2x)...

Find the derivative of
`"sin"^(-1) (2x)/(1+x^(2))` w.r.t. `"tan"^(-1)(2x)/(1-x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of cos^(-1)""(1-x^(2))/(1+x^(2))" w.r.t. "sin^(-1)""(2x)/(1+x^(2)).

Find the derivatives w.r.t. x : "sin"^(-1)(2x)/(1+x^(2))

Find the derivatives w.r.t. x : sin^(-1)(e^(x^(2)))

Find the derivative of tan^-1((2x)/(1-x^2)) w.r.t. sin^-1((2x)/(1+x^2)) .

Find the derivative of tan^(-1)((t)/(sqrt(1-t^(2)))) w.r.t. "sec"^(-1)((1)/(2t^(2)-1)) .

Find the derivatives w.r.t. x : (sin^(-1)x)^(m)

Find the derivatives of sqrt((1-sin2x)/(1+sin 2x))

Find the derivatives w.r.t. x : 2 "tan"^(-1)(x)/(a)

Find the differential coefficient of : "cos"^(-1)(1-x^(2))/(1+x^(2))" w.r.t. sin"^(-1) (2x)/(1+x^(2))

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))