Home
Class 12
MATHS
If x^(y) =e^(x-y), prve that , (dy)/(dx)...

If `x^(y) =e^(x-y)`, prve that , `(dy)/(dx) =(logx)/((log ex)^(2))` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

(dy)/(dx)=(cos(logx))/(log_(e)y)

If x^y=e^(x-y) , Prove that dy/dx=logx/(1+logx)^2

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

If e^x+e^y=e^(x+y) , prove that dy/dx=-e^(y-x)

x(dy)/(dx)=y(logy-logx-1)

If x^(logy)=logx , prove that, (x)/(y).(dy)/(dx)=(1-logx log y)/((log x)^(2))

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

Find dy/dx : y=(logx)^x