Home
Class 12
MATHS
If siny=xsin(a+y), prove that (dy)/(dx)=...

If `siny=xsin(a+y),` prove that `(dy)/(dx)=(sin^2(a+y))/(sina)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin y = x sin(a+y), than prove that dy/dx=(sin^2(a+y))/sina

(dy)/(dx)=sin(x+y)

If siny=x sin(a+y) , prove that, (dy)/(dx)=(sin a)/(1-2x cos a +x^(2)) .

If cosy=x cos(a+y)," prove that " (dy)/(dx) =(cos^(2)(a+y))/(sin a) , where a ne 0 is a constant .

(dy)/(dx)=(sin2y)/(x+tany)

If siny = x sin(a+y) then show that (dy)/(dx)= (sina)/(1-2xcos a+x^2) .

If cos y= x cos (a+y) , with cos a ne pm 1 , prove that (dy)/(dx)=(cos^(2)(a+y))/(sin a) .

If y=(x)/(x+2) prove that x(dy)/(dx)=y(1-y)

If siny=x sin(a+y) , then the value of (dy)/(dx) is -

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))