Home
Class 12
MATHS
If y=a^(x^(a^(x^(…oo)))), show that, (dy...

If `y=a^(x^(a^(x^(…oo))))`, show that, `(dy)/(dx)=(y^(2)logy)/(x(1-y log x log y))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .

If y=x^(x^(x^(...oo))) , then prove that, (dy)/(dx)=(y^(2))/(x(1-y log x)) .

If x=y^(y^(y^(...oo))) , then show that, (dy)/(dx)=(y(1-x logy))/(x^(2)) .

If y=(sqrt(x))^((sqrt(x))^((sqrt(x))^(...oo) , show that, x (dy)/(dx)=(y^(2))/(2-y log x).

x(dy)/(dx)=y(logy-logx-1)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

If y=(logx)^((logx)^((logx)^(....oo))) prove that, xlogx(dy)/(dx)=(y^(2))/(1-y log(logx))

If y=x+(1)/(x+(1)/(x+…oo)) , prove that (dy)/(dx)=(y)/(2y-x) .

If y^(x)=e^(y-x)" prove that, " (dy)/(dx)=((logey)^(2))/(log y) .

If y=x^((log x)^(log(log,x)))," then "(dy)/(dx) is