Home
Class 12
MATHS
In the following Lagrange's mean value t...

In the following Lagrange's mean value theorem,
`f(a+h)-f(a)=hf'(a+theta h), 0 lt theta lt 1`

If `f(x)=(1)/(3) x^(3)-(3)/(2) x^(2)+2x, a=0 and h=3 " find " theta`.

Promotional Banner

Similar Questions

Explore conceptually related problems

In the mean value theorem, f(a+h)=f(a)+hf'(a+theta h) (0 lt theta lt 1), find theta when f(x)=sqrt(x), a=1 and h=3.

In the mean value theorem f(a+h)=f(a)+hf'(a+theta h) ( 0 lt theta lt 1) , if f(x)=sqrt(x), a=1, h=3 , then the value of theta is -

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=sqrt(x) and a=4, b=9, find c.

Using Largrange's mean value theorem f(b)-f(a)=(b-a)f'(c ) find the value of c, given f(x)=x(x-1)(x-2), a=0 and b=(1)/(2) .

Lagrange's mean value theorem is , f(b)-f(a)=(b-a)f'(c ), a lt c lt b if f(x)=Ax^(2)+Bx+c" in " a le x le b , find c.

Using Lagrange's mean value theorem prove that, log (1+x) lt x ("when " x gt 0)

If f(x)=(1)/(x) , then find the value of theta in the mean value theorem f(x+h)=f(x)+hf'(x+theta h), 0 lt theta lt 1 .

The value of ′c′ in Lagrange's mean value theorem for f(x) = x(x−2)^2 in [0,2] is-

In the mean value theorem, f(x+h)=f(x)+hf'(x+theta h)(0 lt theta lt 1), if f(x)=e^(x) , then show that the value of theta is independent of x.

In the mean value theorem f(b)-f(a)=(b-a)f'(c ), (a lt c lt b)," if " f(x)=x^(3)-3x-1 and a=-(11)/(7), b=(13)/(7) , find the value of c.