Home
Class 12
MATHS
If f(9)=9 and f'(9)=4 then lim(x to 9)(s...

If f(9)=9 and f'(9)=4 then `lim_(x to 9)(sqrt(f(x))-3)/(sqrt(x)-3)` is equal to -

Text Solution

Verified by Experts

The correct Answer is:
4
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Matrix Match Type)|2 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Comprehension Type)|6 Videos
  • DIFFERENTIATION

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Multiple Correct Answers Type)|5 Videos
  • DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE

    CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

If f(9)=9,f'(9)=4 , then evaluate lim_(xto9)(sqrtf(x)-3)/(sqrtx-3) .

If f(9) = 9, f'(9) = 4, then the value of lim_(xrarr9)(sqrt(f(x))-3)/(sqrt(x)-3) is

Knowledge Check

  • If f(1) = 1, f'(1) = 2 then lim_(x to 1 ) (sqrt(f(x))-1)/(sqrt(x)-1) is equal to -

    A
    2
    B
    4
    C
    1
    D
    `(1)/(2)`
  • If f(x) be a function such that f (9) =9 and f '(9)=3, then the value of lim _(xto9) (sqrt(f (x))-3)/(sqrtx-3) is equal to-

    A
    9
    B
    1
    C
    6
    D
    3
  • The value of lim _(xto0) (27^(x)-9^(x)-3^(x)+1)/(sqrt5 -sqrt(4+cos x)) is equal to-

    A
    `sqrt5 (log _(2)3) ^(2)`
    B
    `8sqrt5 (log _(e)3) ^(2)`
    C
    `8sqrt5log _(e) 3`
    D
    `16sqrt5 (log _(e)3) ^(2)`
  • Similar Questions

    Explore conceptually related problems

    If f(9)=9 ,f'(9)=4, underset(xrarr9)"Lt" (sqrt f(x)-3)/(sqrtx-3)=?

    If f(2)=4,g(2)=9andf'(2)=2g'(2) , then evaluate lim_(xto2)(sqrt(f(x))-2)/(sqrt(g(x))-3) .

    Let f(x) be a differentiable function and f'(4)=5 . Then lim_(x to 2) (f(4) -f(x^(2)))/(x-2) equals

    "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

    If f(x) = |x-3| + 2 , evalute lim_(x to 3 + ) (f(x)-f(3))/(x-3) and lim_(x to 3 - ) (f(x)-f(3))/(x-3) Hence examine the differentiability of f(x) at x = 3 .