Home
Class 12
MATHS
intx^(2) cdot root(3)(x^(3)+8)dx...

`intx^(2) cdot root(3)(x^(3)+8)dx`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(4) (x^(3)+8)^((4)/(3))+c`
Promotional Banner

Topper's Solved these Questions

  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Short Answer Type Questions)|48 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Lomg Answer Type Questions)|31 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Multiple Choice Type Questions)|14 Videos
  • MEASURMENT OF TRIGONOMETRICAL ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2026|23 Videos

Similar Questions

Explore conceptually related problems

intx cdot root(3)(x+2)dx

int x^(2) root(3)(x^(3)-5) dx can be easily evaluated by the substitution-

intx^(2) cdot 10^(x^(3))dx

int x^(3)root(3)(x^(4)-4)dx

"Let " k(x)=int((x^(2)+1)dx)/(root(3)(x^(3)+3x+6)) " and " k(-1)=(1)/(root(3)(2)). " Then the value of " k(-2) " is "-.

Evaluate : int dx/(sqrte^(5x) cdot root(4)(e^(2x) + e^(-2x))^3)

int e^((1)/(x))cdot(1)/(x^(2))dx

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

The value of int e^(-(1)/(x)) cdot (1)/(x^(2)) dx is-

intx^3e^(x^2) dx =?