Home
Class 12
MATHS
int(px)/(root(3)(qx+r))dx...

`int(px)/(root(3)(qx+r))dx`

Text Solution

Verified by Experts

The correct Answer is:
`(3p)/(5q^(2))(qx+r)^((5)/(3))-(3pr)/(2q^(2))(qx+r)^((2)/(3))+c`
Promotional Banner

Topper's Solved these Questions

  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Lomg Answer Type Questions)|31 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6B (Multiple Choice Type Questions)|10 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Very Short Answer Type Questions)|34 Videos
  • MEASURMENT OF TRIGONOMETRICAL ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2026|23 Videos

Similar Questions

Explore conceptually related problems

int(1-sinx )/(root(3)(x+cos x))dx

Evaluate: int ((sqrtx)^3-root(3)(x))/(6root(4)(x))dx

int x^(3)root(3)(x^(4)-4)dx

"If " I=int (dx)/(root(3)(sin^(11)xcosx))=-A(tanx)^(-(8)/(3))+B(tanx)^(-(2)/(3))+c," then find the value of " 4A+B " .

int((4x-3)dx)/(root(3)(4x^(2)-6x+9))

int (x dx)/(sqrt(x+1)+root(3)(x+1))

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

int x^(2) root(3)(x^(3)-5) dx can be easily evaluated by the substitution-

"Let " k(x)=int((x^(2)+1)dx)/(root(3)(x^(3)+3x+6)) " and " k(-1)=(1)/(root(3)(2)). " Then the value of " k(-2) " is "-.

int(dx)/(x-x^3) =