Home
Class 12
MATHS
int (dx)/(sqrt(x)-1)...

`int (dx)/(sqrt(x)-1)`

Text Solution

Verified by Experts

The correct Answer is:
`2[sqrt(x)+log|sqrt(x)-1|]+c`
Promotional Banner

Topper's Solved these Questions

  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Lomg Answer Type Questions)|31 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6B (Multiple Choice Type Questions)|10 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Very Short Answer Type Questions)|34 Videos
  • MEASURMENT OF TRIGONOMETRICAL ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2026|23 Videos

Similar Questions

Explore conceptually related problems

int (x dx)/(sqrt(x+1)+root(3)(x+1))

Evaluate the follow integrals : int (dx)/(sqrt(e^(x)-1))

int (dx)/(sqrt(2e^(x)-1))=2 sec^(-1)(sqrt(2)e^((x)/(2)))+c

int (dx)/(x-sqrt(x^(2)-1))

int (dx)/(sqrt(1-x-x^(2)))

Evaluate int(dx)/(sqrt(1-x^(2))(1+sqrt(1-x^(2)))) .

int (dx)/(sqrt(1-x^(2)){1+(sin^(-1)x)^(2)})

The value of int(dx)/(2sqrt(x)(x+1)) is -

int(dx)/((1+sqrt(x))sqrt((x-x^(2)))) is equal to

Evaluate: int(dx)/(sqrt(2e^(x)-1))=