Home
Class 12
MATHS
If a lt 0," then "int (dx)/(sqrt(ax^(2)+...

If `a lt 0," then "int (dx)/(sqrt(ax^(2)+bx+c))` can be evaluated using the formula-

A

`int(dx)/(sqrt(x^(2)+k^(2)))=log |x+sqrt(x^(2)+k^(2))|+c`

B

`int(dx)/(sqrt(x^(2)-k^(2)))=log |x+sqrt(x^(2)-k^(2))|+c`

C

`int (dx)/(sqrt(k^(2)-k^(2)))=sin^(-1)""(x)/(k)+c`

D

A or B

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6B (Very Short Answer Type Questions)|25 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6B (Short Answer Type Questions)|28 Videos
  • METHOD OF SUBSTITUTION

    CHHAYA PUBLICATION|Exercise EXERCISE 6A (Lomg Answer Type Questions)|31 Videos
  • MEASURMENT OF TRIGONOMETRICAL ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • MISCELLANEOUS EXAMPLES

    CHHAYA PUBLICATION|Exercise WBJEE 2026|23 Videos

Similar Questions

Explore conceptually related problems

int (dx)/(sqrt(ax+b))

int (dx)/(sqrt(x^(2)-ax))

int sqrt(2ax-x^(2))dx

int (dx)/(a+bx)

If p lt 0 , then the intergral of the form int sqrt(px^(2)+qx+r)dx can be obtained using the formula-

Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+c))dx are claculated with the aid of one of the following three Euler substitutions: i. sqrt(ax^(2)+bx+c)=t+-x sqrt(a)if a gt 0 ii. sqrt(ax^(2)+bx+c)=tx+-x sqrt(c)if c gt 0 iii. sqrt(ax^(2)+bx+c)=(x-a)t if ax^(2)+bx+c=a(x-a)(x-b) i.e., if alpha is real root of ax^(2)+bx+c=0 (xdx)/(sqrt(7x-10-x^(2))^3) can be evaluated by substituting for x as

Evaluate: int sqrt(4-x^2) dx

Evaluate: int_0^(1)x(dx)/(sqrt(1-x^(2)))

int (ax^2+bx+c)dx =