Home
Class 12
MATHS
If ABC is a right angled triangle, then ...

If ABC is a right angled triangle, then the value of `(cos ^(2)A +cos ^(2) B+ cos ^(2)C)` is -

A

2

B

1

C

0

D

`3/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MCQ's

    CHHAYA PUBLICATION|Exercise QUESTION PAPER 4|91 Videos
  • MCQ's

    CHHAYA PUBLICATION|Exercise QUESTION PAPER 10|1 Videos
  • MCQ's

    CHHAYA PUBLICATION|Exercise QUESTION PAPER 9|66 Videos
  • MCQ ZONE 3

    CHHAYA PUBLICATION|Exercise Question Paper 8|30 Videos
  • Measures of Central Tendency

    CHHAYA PUBLICATION|Exercise Exercise 2 C Very short answer type question|18 Videos

Similar Questions

Explore conceptually related problems

ABC is a right angled triangle, then the value of sin^(2)A + sin^(2)B + sin^(2)C will be-

If A,B,C are the angles of a triangle, prove that the maximum value of cos A cos B cos C "is" (1)/(8)

Knowledge Check

  • If A+B+C=pi then the value of cos ^(2)A + cos ^(2) B+ cos ^(2)C is-

    A
    `1-cos A cos B cosC`
    B
    `2 cos A cos B cos C`
    C
    `1-2 cos A cos B cos C`
    D
    `1+2 cos A cos B cos C`
  • In any triangle ABC, the valur of a (cos ^(2) B+ cos ^(2)C)+ cos A (b cos B+ c cos C) is-

    A
    `a+b+c`
    B
    c
    C
    a
    D
    b
  • If A+C+B=180, then the value of (cos ^(2) A+ cos ^(2) B +cos ^(2) C-2 cos A cos B cos C) is-

    A
    3
    B
    2
    C
    1
    D
    0
  • Similar Questions

    Explore conceptually related problems

    For any triangle ABC, find the value of (bc cos^2(A/2)+cacos^2(B/2)+abcos^2(C/2))/(a+b+c .

    If A,B,C are the angles of a triangle, show that, (iii) (cos A cos C + cos (A + B) cos(B + C))/(cos A sin C - sin (A + B) cos (B + C)) = cot C .

    If A+C=2b, then the value of (cos C - cos A)/(sin A-sin C) is-

    If alpha, beta , gamma are angles of a triangle then the value of (sin^(2) alpha + sin ^(2) beta+sin ^(2) gamma-2 cos alpha cos beta cos gamma) is-

    P_(1), P_(2), P_(3) are altitudes of a triangle ABC from the vertices A, B, C and Delta is the area of the triangle, The value of (cos A)/P_(1) + (cos B)/P_(2) + (cos C)/P_(3) is equal to-