Home
Class 12
MATHS
Show that, 1/("cosec"-cotalpha)-1/(sin...

Show that,
`1/("cosec"-cotalpha)-1/(sinalpha)=1/(sinalpha)-1/("cosec"alpha+cotalpha).`

Text Solution

Verified by Experts

The correct Answer is:
` therefore 1/("cosec"-cotalpha)-1/(sinalpha)=1/(sinalpha)-1/("cosec"alpha+cotalpha).`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise EXERCISE 2|94 Videos
  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams|1 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • VECTOR

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMINATION|18 Videos

Similar Questions

Explore conceptually related problems

Prove that (1)/("cosec"alpha-cot alpha)-(1)/(sin alpha)=(1)/(sin alpha)-(1)/("cosec"alpha+cotalpha) .

If tantheta=(sin alpha-cos alpha)/(sinalpha+cosalpha)1 then

(cotalpha+"cosec"alpha-1)/(cotalpha-"cosec"alpha+1)=(1+cosalpha)/(sinalpha)

Prove that cosalpha/(sin3alpha)+(cos3alpha)/(sin9alpha)+(cos9alpha)/(sin27alpha)=1/2[cotalpha-cot27alpha]

prove that, |{:(0,cosalpha,-sinalpha),(sinalpha,0,cosalpha),(cosalpha,sinalpha,0):}|^2=|{:(" "1,x,-x),(" "x,1," "x),(-x,x," "1):}| where x= sinalpha cosalpha

1/(cos alpha + cos 3 alpha)+ 1/(cos alpha + cos 5 alpha)+ 1/(cos alpha + cos 7 alpha) +....+ 1/(cos alpha +cos(2n+1) alpha) = 1/2 "cosec" alpha[tan (n+1) alpha - tan alpha ]

If alpha in (-(3pi)/2,-pi) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)+cos^(-1)(cosalpha) is equal to

If alpha in (0,pi/2) , then the value of tan^(-1)(cotalpha)-cot^(-1)(tanalpha)+sin^(-1)(sinalpha)-cos^(-1)(cosalpha) is equal to (a) 2pi+alpha (b) pi+alpha (c) 0 (d) pi-alpha

Prove the following identities: cot^2alpha(secalpha-1)/(1+sinalpha)+sec^2alpha(sinalpha-1)/(secalpha+1)=0

For a real number alpha , let A(alpha) denote the matrix ((cosalpha,sinalpha),(-sinalpha,cosalpha)) . Then for real numbers alpha_(1) and alpha_(2) , the value of A(alpha_(1))A(alpha_(2)) is -