Home
Class 12
MATHS
(i) If in a triangle ABC, a^(4) + b^(4) ...

(i) If in a triangle ABC, `a^(4) + b^(4) +c^(4) - 2b^(2) c^(2) -2c^(2)a^(2)=0`, then show that, `C=45^(@)` or `135^(@)`.
(ii) In in a triangle ABC,
`sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B`, show that, one of the angles of the triangle is `30^(@)` or `150^(@)`

Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise EXERCISE (Multiple choice questions)|13 Videos
  • PROPERTIES OF TRIANGLE

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Questions|20 Videos
  • PRODUCTS OF TWO VECTORS

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type )|2 Videos
  • QUADRATIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Exams (Assertion- Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

In triangle ABC if a^(4) + b^(4) + c^(4) = 2a^(2)b^(2) + 2b^(2)c^(2) then the values of B will be-

If in a triangle ABC, sin A, sin B, sin C are in A.P, then

If in triangleABC ,sin^4A+sin^4B+sin^4C=sin^2Bsin^2C+2sin^2Csin^2A+2sin^2Asin^2B then show that angle A is either 30^@ or 150^@

If sin^(2)B+ sin^(2)C = sin^(2)A , then the triangle ABC is-

In triangle ABC, (i) asin(A/2 + B) = (b+c) sin A/2

In any triangle ABC, if sin^(2)A + sin^(2)B + sin^(2)C = 9/4 , show that the triangle is equilateral.

In triangle ABC if sin^2B+sin^2C=sin^2A then

In any triangle ABC, the value of (b^(2)sin 2C + c^(2) sin 2B) is-

In triangleABC sin^2A+sin^2B =sin^2C then angleC=