Home
Class 12
MATHS
omega is an imagianry cube root of unity...

`omega` is an imagianry cube root of unity, show that, `(1-omega^(2))(1-omega^(4))(1-omega^(8))(1-omega^(10))=9`

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise EXERCISE 4 MULTIPLE CHOICE TYPE QUESTIONS|18 Videos
  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise EXERCISE 4 (VERY SHORT ANSWER TYPE QUESTIONS)|34 Videos
  • CIRCLE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (E. Assertion-Reason Type)|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

If omega be an imaginary cube root of unity, show that, (1-omega)(1-omega^(2))(1-omega^(4))(1-omega^(5))=9

If omega is an imaginary cube root of unity, show that (omega)/(9)[(1- omega)(1-omega^(2))(1- omega^(4))(1- omega^(8))+9((c+aomega+bomega^(2))/(aomega^(2)+b+comega))^(2)]=-1

If omega be an imaginary cube root of unity, show that (1+omega-omega^(2))(1-omega+omega^(2))=4

If omega is an imaginary cube root of unity, show that (x+omega+ omega^(2))(x-omega^(2)-omega^(4))(x+omega^(4)+omega^(8))(x-omega^(8)-omega^(16)).."to" 2n factors =(x^(2)-1)^(n)

If omega be an imaginary cube root or unity, prove that (1- omega+ omega^(2)) (1-omega^(2)+ omega^(4)) (1- omega^(4)+ omega ^(8))..."to" 2 n th factor =2^(2n)

If omega be an imaginary cube root of unity, show that (xomega^(2)+yomega+z)/(xomega+y+zomega^(2))=omega

If omega is an imaginary cube root of unity then the value of (2-omega),(2-omega^(2))+2(2-omega)(3-omega^(2))+....+(n-1)(n-omega)(n-omega^(2)) is

If omega is an imaginary cube root of unity, then the value of (1+ omega- omega^(2))(1- omega + omega ^(2)) is-

If omega is the complex cube root of unity, then find (1-omega^2)(1-omega^4)

If omega is a complex cube root of unity, then the value of (2-omega) (2-omega ^(2)) (2- omega ^(10)) (2- omega ^(11)) will be-