Home
Class 12
MATHS
If |z-3|=min{|z-1|,|z-5|}, then the val...

If `|z-3|=min{|z-1|,|z-5|},` then the values of Re(z) will be

A

2

B

`(5)/(2)`

C

`(7)/(2)`

D

4

Text Solution

Verified by Experts

The correct Answer is:
A, D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTION FOR COMPETITIVE EXAMS(Multiple Corrrect Answer type)|11 Videos
  • COMPLEX NUMBER

    CHHAYA PUBLICATION|Exercise EXERCISE 4(LONG ANSWER TYPE QUESTION )|27 Videos
  • CIRCLE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (E. Assertion-Reason Type)|2 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Examination (Assertion - Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

If |z-3|=min{|z-1|,|z-5|} , then Re(z) equals to

z=i^5 then the value of (z+z^2+z^3+z^4)

Knowledge Check

  • If iz^3+z^2-z+i=0 then the value of abs(z) is

    A
    2
    B
    1
    C
    `sqrt2`
    D
    none of these
  • If absz=min{abs(z-1), abs(z+1)} , then

    A
    `abs(z+barz)=1/2`
    B
    `z+barz=1`
    C
    `abs(z+barz)=1`
    D
    None of these
  • If z(Re z ne2) be a complex number such that z^2-4z=absz^2+16/absz^3 then the value of absz^4 is

    A
    2
    B
    4
    C
    8
    D
    1
  • Similar Questions

    Explore conceptually related problems

    If |z|=1 and z ne +-1 , then one of the possible value of arg(z)-arg(z+1)-arg(z-1) , is

    If z_1, z_2, z_3 are distinct nonzero complex numbers and a ,b , c in R^+ such that a/(|z_1-z_2|)=b/(|z_2-z_3|)=c/(|z_3-z_1|) Then find the value of (a^2)/(z_1-z_2)+(b^2)/(z_2-z_3)+(c^2)/(z_3-z_1)

    If |z_1-1|lt=1,|z_2-2|lt=2,|z_(3)-3|lt=3, then find the greatest value of |z_1+z_2+z_3|dot

    If z_1, z_2 in C ,z_1^2+z_2^2 in R ,z_1(z_1^2-3z_2^2)=2 and z_2(3z_1^2-z_2^2)=11 , then the value of z_1 ^2+z_2 ^2 is 10 b. 12 c. 5 d. 8

    For all complex numbers z_(1),z_(2) satisfying |z_(1)|=12 and |z_(2) -3-4i|=5, then minimum value of |z_(1)-z_(2)| is-