Home
Class 12
MATHS
If S(n) = 1^(2) - 2^(2) + 3^(2) - 4^(2) ...

If `S_(n) = 1^(2) - 2^(2) + 3^(2) - 4^(2) + 5^(2) - 6^(2) +…`, then-

A

`((a+c)(3a-c))/(4a^(2)c^(2))`

B

`(2)/(bc) - (1)/(b^(2))`

C

`(2)/(bc) - (1)/(a^(2))`

D

`((a-c)(3a + c))/(4a^(2)c^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A,B
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Integer Answer Type)|5 Videos
  • SEQUENCE AND SERIES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Comprehension Type)|1 Videos
  • SEQUENCE AND SERIES

    CHHAYA PUBLICATION|Exercise Exercise 9 E (Very Short Answer Type Questions)|28 Videos
  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Assertion-Reason type)|2 Videos
  • SET THEORY

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos

Similar Questions

Explore conceptually related problems

Find the sum to n terms of each of the following series : 1^(2) - 2^(2)+3^(2) - 4^(2) + 5^(2) - 6^(2)+…

If S_(n)=(1^(2)-1+1)(1!)+(2^(2)-2+1)(2!)+...+(n^(2)-n+1)(n!) , then S_(50)=

Let S_(k) = (1+2+3+...+k)/(k) . If S_(1)^(2) + s_(2)^(2) +...+S_(10)^(2) = (5)/(12)A , then A is equal to

If S_(n) = 1 + (1)/(2) + (1)/(2^(2))+….+(1)/(2^(n-1)) , find the least value of n for which 2- S_(n) lt (1)/(100) .

Increasing order of Electron affinity for following configuration. 1s^2 , 2s^2 , 2p^3 (b) 1s^2 2s^2 2p^4 [c] 1s^2 , 2s^2 , 2p^6 , 3s^2 , 3p^4 (d) 1s^2 , 2s^2 , 2p^6 , 3s^2 , 3p^3

Which of the following electronic configurations has the lowest ionization enthalpy ? (a) 1s^2 , 2s^2 , 2p^5 , ,(b) 1s^2 , 2s^2 , 2p^6 (c) 1s^2 , 2s^2 , 2p^6 , 3s^2 .

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

Find the sum of the following series : 3.1^(2) + 4.2^(2) + 5.3^(2) +…+(n+2). n^(2)

The value of the determinant |(1^2, 2^2, 3^2, 4^2) ,(2^2, 3^2 ,4^2,5^2) ,(3^2, 4^2,5^2 ,6^2) ,(4^2, 5^2, 6^2, 7^2)| is equal to 1 b. 0 c. 2 d. 3

If S_(n)=(1.2)/(3!)+(2.2^(2))/(4!)+(3.2^(2))/(5!)+...+ up to n terms, then sum of infinite terms is