Home
Class 12
MATHS
If the three points (a,b),(a+kcosalpha,b...

If the three points (a,b),`(a+kcosalpha,b+ksinalpha)and(a+kcosbeta,b+ksinbeta)` are the vertices of an equilateral triangle , then which of the following is true and why ?
(i) `|alpha-beta|=(pi)/(4)` , (ii) `|alpha-beta|=(pi)/(2)`
(iii) `|alpha-beta|=(pi)/(6)` , (iv) `|alpha-beta|=(pi)/(3)`

Text Solution

Verified by Experts

The correct Answer is:
`cos(alpha-beta)=(1)/(2)="cos"(pi)/(3)therefore|alpha-beta|=(pi)/(3)`.
Promotional Banner

Topper's Solved these Questions

  • REVISION OF PREVIOUS TWO DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise EXERCISE 1 (MCQ)|30 Videos
  • REVISION OF PREVIOUS TWO DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise EXERCISE 1 (Very Short Type Questions )|41 Videos
  • RELATIONS

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Assertion -Reason Type )|2 Videos
  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Assertion-Reason type)|2 Videos

Similar Questions

Explore conceptually related problems

If the points O (0,0), A(cos alpha, sin alpha), B(cos beta, sin beta) are the vertices of a right-angled triangle, then |sinfrac((alpha-beta))(2)| =

If tan ""(alpha pi)/(4) =cot ""(beta pi)/(4), then which one of the following is correct ?

If 0 lt alpha lt beta lt (pi)/(2) , prove that, tan alpha-tan beta lt alpha-beta .

The line joining A (b cos alpha b sin alpha ) and B (a cos beta , a sin beta ) , where a ne b , is produced to the point M(x , y) so that AM : BM = b : a . Then x "cos" (alpha+beta)/(2)+ y "sin" (alpha+beta)/(2) is equal to _

If alpha,beta(alpha < beta) are the roots of equation 6x^2+11x+3="0 , then which following real? (a) cos^(-1)alpha (b) sin^(-1)beta (c) cosec^(-1)alpha (d) both cot^(-1)alpha and cot^(-1)beta

State if the given angles are coterminal. (i) alpha=185^0,beta=-545^0 (ii) alpha=(17pi)/(36),beta=(161pi)/(36)

If alpha+beta=(pi)/(2) , then prove that cosalpha=sqrt((sinalpha)/(cosbeta)-sinalphacosbeta)

The line joining A (b cos alpha, b sin alpha ) and B (a cos beta, a sin beta) , where a ne b , is produced to the point M(x,y) so that AM :MB = b :a Then xcosfrac(alpha+beta)(2)+ysinfrac(alpha+beta)(2)

If cos(alpha+beta)=4/5.sin(alpha-beta)=5/13 and alpha , beta lie between 0 and pi/4 then find the value of tan2alpha