Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
DIFFERENTIATION
CHHAYA PUBLICATION|Exercise Short AnswerType Questions|63 VideosDIFFERENTIATION
CHHAYA PUBLICATION|Exercise Long Answer Type Questions|23 VideosDIFFERENTIATION
CHHAYA PUBLICATION|Exercise Multiple Choice Type Questions|14 VideosDIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND FIRST DEGREE
CHHAYA PUBLICATION|Exercise E ASSERTION-REASON TYPE|2 VideosDIRECTION COSINES AND DIRECTION RATIOS
CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
Similar Questions
Explore conceptually related problems
CHHAYA PUBLICATION-DIFFERENTIATION-Very short Answer Type Questions
- Find (dy)/(dx) : y = log (2)x
Text Solution
|
- Find (dy)/(dx) : y = 2x^(m)-3m^(x)+4e^(x)
Text Solution
|
- Find (dy)/(dx) : y =2^(x+2)-e^(x+1)+3log(e) x
Text Solution
|
- Find (dy)/(dx) : y = log (10)x+10^(x)+x^(10)+10
Text Solution
|
- Find (dy)/(dx) : y = e^(x+1)-5^(x+1)+e^(logx)+log(a)x+logx^(a)
Text Solution
|
- Find (dy)/(dx) : y = a sec x +b tan x - c cosec x + d cot x - e
Text Solution
|
- Find (dy)/(dx) : y = 4 cos2(x)/(2)-3tan (pi - x ) + 2^(3+x)
Text Solution
|
- Find (dy)/(dx) : y = (1)/(sin x cos x )
Text Solution
|
- Find (dy)/(dx) : y = (sin x + cos x )/(sqrt(1 + sin 2 x ))
Text Solution
|
- Find (dy)/(dx) : y = (cos x - cos 2 x)/(1 - cos x )
Text Solution
|
- Find the derivative of cot x by expressing it in the form cos x * cos...
Text Solution
|
- Writing tan x as (sin x )/(cos x ) deduce that (d)/(dx)(tan x ) = se...
Text Solution
|
- If y = 2 x ^(3) + 3 x ^(2) - 36 x + 7 find the values of x for whi...
Text Solution
|
- If f(x) = x^(3) - 2 px^(2) - 4 x + 5 and f' (2) = 0 find p .
Text Solution
|
- If s = at^(2) + bt + c find the value of [(ds)/(dt)](t=1) .
Text Solution
|
- If f(x) = 2x^(3)-3x^(2)+ 4x - 2 , find the value of f'(-2) .
Text Solution
|
- If y = x^(5) show that x(dy)/(dx)-5y = 0 .
Text Solution
|
- If f(x)=x|x| , prove that f'(x)=2|x|
Text Solution
|
- If f(x)=|x-2|+|x-4| show that f'(3) = 0
Text Solution
|
- Find the value of f'(x) when f(x)=|x|(x+|x|)
Text Solution
|