Home
Class 12
MATHS
X and Y are two sets and f: X->Y If {f(c...

X and Y are two sets and `f: X->Y` If `{f(c)=y; c subX, y subY}` and `{f^(-1)(d)=x;d subY,x sub X`, then the true statement is `(a) f(f^(-1)(b))=b` `(b) f^(-1)(f(a))=a` `(c) f(f^(-1)(b))=b, b sub y` `(d) f^(-1)(f(a))=a, a sub x`

Promotional Banner

Similar Questions

Explore conceptually related problems

X and Y are two sets and f:X rarr Y If {f(c)=y;c sub X,y sub Y} and {f^(-1)(d)=x;d sub Y,x sub X, then the true statement is (a)f(f^(-1)(b))=b (b)f ^(-1)(f(a))=a(c)f(f^(-1)(b))=b,b sub y(d)f^(-1)(f(a))=a,a sub x

If f(x)=|(log)_e x| , then (a) f'(1^+)=1 (b) f^'(1^(-))=-1 (c) f'(1)=1 (d) f'(1)=-1

If f(x)=|(log)_(e)x|, then (a) f'(1^(+))=1 (b) f'(1^(-))=-1( c) f'(1)=1(d)f'(1)=-1

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1) , then f(f(a x)) in terms of f(x) is equal to (a)(f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1)) (f(x)-1)/(a(f(x)+1)) (d) (f(x)+1)/(a(f(x)+1))

If f(x)=(x-1)/(x+1), then f(f(ax)) in terms of f(x) is equal to (a) (f(x)-1)/(a(f(x)-1)) (b) (f(x)+1)/(a(f(x)-1))(c)(f(x)-1)/(a(f(x)+1))(d)(f(x)+1)/(a(f(x)+1))

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)-|f(x)| (d) none of these