Home
Class 12
MATHS
If 1,alpha1,alpha2,alpha3,alpha4 be the ...

If `1,alpha_1,alpha_2,alpha_3,alpha_4` be the roots `x^5-1=0`, then value of `[omega-alpha_1]/[omega^2-alpha_1].[omega-alpha_2]/[omega^2-alpha_2].[omega-alpha_3]/[omega^2-alpha_3].[omega-alpha_4]/[omega^2-alpha_4]` is (where `omega` is imaginary cube root of unity)

Text Solution

Verified by Experts

`x^5-1=(x-1)(x-alpha_1)(x-alpha_2)(x-alpha_3)(x-alpha_4)`
`w^5-1=(x-1)(w-alpha_1)(w-alpha_2)(w-alpha_3)(w-alpha_4)`
`w^10-1=(w^2-1)(w^2-alpha_1)(w^2-alpha_2)(w^2-alpha_3)(w-alpha_5)`
`(w^5-1)/(w^10-1)=((x-1)(w-alpha_1)(w-alpha_2)(w-alpha_3)(w-alpha_4))/((w^2-1)(w^2-alpha_1)(w^2-alpha_2)(w^2-alpha_3)(w-alpha_5))`
`(w+1)/(w^5+1)=((w-alpha_1)...(w-alpha_4))/((w^2-alpha_1)....(w^2-alpha_4))`
`w^2/w=((w-alpha_1)...(w-alpha_4))/((w^2-alpha_1)....(w^2-alpha_4))`
option 1 is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha_1,alpha_2,alpha_3,alpha_4 be the roots of x^5-1 =0 then prove that (w-alpha_1)/(w^2-alpha_1).(w-alpha_2)/(w^2-alpha_2).(w-alpha_3)/(w^2-alpha_3).(w-alpha_4)/(w^2-alpha_4)=w where w is a nonreal complex cube root of unity.

If 1,alpha_(1),alpha_(2),alpha_(3),alpha_(4) are the fifth roots of unity then sum_(i=1)^(4)(1)/(2-alpha_(i))=

if 1,alpha_1, alpha_2, ……alpha_(3n) be the roots of equation x^(3n+1)-1=0 and omega be an imaginary cube root of unilty then ((omega^2-alpha_1)(omega^2-alpha).(omega^2-alpha(3n)))/((omega-alpha_1)(omega-alpha_2)……(omega-alpha_(3n)))= (A) omega (B) -omega (C) 1 (D) omega^2

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If 1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are n, nth roots of unity, then (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))...(1-alpha_(n-1)) equals to

If alpha_(1),alpha_(2),alpha_(3),alpha_(4) are the roots of the equation x^(4)+(2-sqrt(3))x^(2)+2+sqrt(3)=0 then find the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))(1-alpha_(4))

If alpha_(1), alpha_(2), alpha_(3), alpha_(4) are the roots of the equation x^(4)+(2-sqrt(3))x^(2)+2+sqrt(3)=0 , then the value of (1-alpha_(1))(1-alpha_(2))(1-alpha_(3))(1-alpha_(4)) is