Home
Class 11
MATHS
If f(x)=x^2+2x+1, then: f(x-1)-=...

If `f(x)=x^2+2x+1`, then: `f(x-1)-=`

A

`x^2-2x-1`

B

`x^2`

C

`x^2-2x+1`

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( f(x-1) \) given that \( f(x) = x^2 + 2x + 1 \). ### Step-by-Step Solution: 1. **Substitute \( x-1 \) into the function \( f(x) \)**: \[ f(x-1) = (x-1)^2 + 2(x-1) + 1 \] 2. **Expand \( (x-1)^2 \)**: \[ (x-1)^2 = x^2 - 2x + 1 \] 3. **Expand \( 2(x-1) \)**: \[ 2(x-1) = 2x - 2 \] 4. **Combine all parts together**: \[ f(x-1) = (x^2 - 2x + 1) + (2x - 2) + 1 \] 5. **Simplify the expression**: - Combine like terms: \[ f(x-1) = x^2 - 2x + 1 + 2x - 2 + 1 \] - The \( -2x \) and \( 2x \) cancel each other out: \[ f(x-1) = x^2 + (1 - 2 + 1) \] - Simplifying the constants: \[ 1 - 2 + 1 = 0 \] - Therefore: \[ f(x-1) = x^2 + 0 = x^2 \] ### Final Answer: \[ f(x-1) = x^2 \] ---
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|139 Videos
  • SEQUENCES AND SERIES

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|81 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos

Similar Questions

Explore conceptually related problems

If f(x-1)=f(x+1) , where f(x)=x^2-2x+3 , then: x=

If f (x)=4x -x ^(2), then f (a+1) -f (a-1) =

If f(x)=sqrt(x^(2)-2x+1), then f' (x) ?

If f(2x + 1 ) = x + 1 , then f(x^2) =

If f(x)=log((1+x)/(1-x)), then f(x) is (i) Even Function (ii) f(x_(1))-f(x_(2))=f(x_(1)+x_(2)) (iii) ((f(x_(1)))/(f(x_(2))))=f(x_(1)-x_(2)) (iv) Odd function

If f(x+1/x)=x^2+1/x^2+8 then f(3), f(5), f(-1)

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x-1)=f(x+2) , where f(x)=1+x-x^2 then: x=