Home
Class 11
MATHS
If f(x-1)=f(x+1), where f(x)=x^2-2x+3, t...

If `f(x-1)=f(x+1)`, where `f(x)=x^2-2x+3`, then: `x=`

A

1

B

2

C

3

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( f(x-1) = f(x+1) \) where \( f(x) = x^2 - 2x + 3 \), we will follow these steps: ### Step 1: Write down the function We have the function: \[ f(x) = x^2 - 2x + 3 \] ### Step 2: Substitute \( x-1 \) into the function Now, we need to find \( f(x-1) \): \[ f(x-1) = (x-1)^2 - 2(x-1) + 3 \] Expanding this: \[ = (x^2 - 2x + 1) - (2x - 2) + 3 \] \[ = x^2 - 2x + 1 - 2x + 2 + 3 \] \[ = x^2 - 4x + 6 \] ### Step 3: Substitute \( x+1 \) into the function Next, we find \( f(x+1) \): \[ f(x+1) = (x+1)^2 - 2(x+1) + 3 \] Expanding this: \[ = (x^2 + 2x + 1) - (2x + 2) + 3 \] \[ = x^2 + 2x + 1 - 2x - 2 + 3 \] \[ = x^2 + 2 \] ### Step 4: Set the two expressions equal to each other Now we set \( f(x-1) \) equal to \( f(x+1) \): \[ x^2 - 4x + 6 = x^2 + 2 \] ### Step 5: Simplify the equation Subtract \( x^2 \) from both sides: \[ -4x + 6 = 2 \] Now, isolate \( x \): \[ -4x = 2 - 6 \] \[ -4x = -4 \] \[ x = 1 \] ### Conclusion The value of \( x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|139 Videos
  • SEQUENCES AND SERIES

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|81 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos

Similar Questions

Explore conceptually related problems

If f(x-1)=f(x+2) , where f(x)=1+x-x^2 then: x=

If f(x)=x^2+2x+1 , then: f(x-1)-=

Evaluate lim_(x rarr1)(f(x)-f(1))/(x-1), where f(x)=x^(2)-2x

lim_(x rarr1)f(x), where f(x)={x^(2)-1,x 1

Evaluate: lim_(x rarr 1) (f(x)-f(1))/(x-1), "where" f(x) = x^(2)-2x .

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+f(-x)+2=

Find (lim)_(x rarr1)f(x), where f(x)=[x^(2)-1,x 1

If : f(x+1/x)=x^3+1/x^3, where x ne0 then: f(x)=...

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}