Home
Class 11
MATHS
If f(x)=(1-x)/(1+x), where x ne -1, then...

If `f(x)=(1-x)/(1+x)`, where `x ne -1,` then: `f^-1(x)=`

A

`f(x)`

B

`(x+1)/(x-1)`

C

`(x-1)/(x+1)`

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To find the inverse of the function \( f(x) = \frac{1-x}{1+x} \), we will follow these steps: ### Step 1: Set \( f(x) \) equal to \( y \) Let \( y = f(x) = \frac{1-x}{1+x} \). ### Step 2: Rearrange the equation to solve for \( x \) We can rearrange the equation to express \( x \) in terms of \( y \): \[ y(1 + x) = 1 - x \] Expanding this gives: \[ y + yx = 1 - x \] ### Step 3: Collect all terms involving \( x \) on one side Rearranging the equation, we get: \[ yx + x = 1 - y \] Factoring out \( x \) from the left side: \[ x(y + 1) = 1 - y \] ### Step 4: Solve for \( x \) Now, we can solve for \( x \): \[ x = \frac{1 - y}{y + 1} \] ### Step 5: Write the inverse function Since we have expressed \( x \) in terms of \( y \), we can write the inverse function: \[ f^{-1}(y) = \frac{1 - y}{y + 1} \] ### Step 6: Replace \( y \) with \( x \) To express the inverse function in standard form, we replace \( y \) with \( x \): \[ f^{-1}(x) = \frac{1 - x}{1 + x} \] Thus, the final answer is: \[ f^{-1}(x) = \frac{1 - x}{1 + x} \] ---
Promotional Banner

Topper's Solved these Questions

  • SETS, RELATIONS AND FUNCTIONS

    MARVEL PUBLICATION|Exercise MCQs|139 Videos
  • SEQUENCES AND SERIES

    MARVEL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|81 Videos
  • STRAIGHT LINE

    MARVEL PUBLICATION|Exercise MISCELLANEOUS MCQS|160 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x)-1 where x ne 0, then: f(1-x)=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)-2.f(2x)=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+(1)/(f(x+1))=

If f(x)=(1)/(x)-1 where x ne 0, then: f(x)+f(-x)+2=

If f(x)=(1)/(x)-1 where x ne 0, then: ((1)/(x))-(1)/(1+f(x))=

If f(x)=x-x^2+x^3-x^4+... where |x| lt 1 , then: f^-1(x)=

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

If : f(x+1/x)=x^3+1/x^3, where x ne0 then: f(x)=...

If f(x-1)=f(x+2) , where f(x)=1+x-x^2 then: x=