Home
Class 12
MATHS
If f(x) (10^(x)+7^(x)-14^(x)-5^(x))/(1-c...

If `f(x) (10^(x)+7^(x)-14^(x)-5^(x))/(1-cos x), x != 0 ` is continuous at x = 0 , then f(0) = …

A

2 log 7

B

`2 log (10/7)`

C

`log(4)log (5/7)`

D

log 70

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( f(0) \) for the function \[ f(x) = \frac{10^x + 7^x - 14^x - 5^x}{1 - \cos x}, \quad x \neq 0 \] and ensure that it is continuous at \( x = 0 \), we will follow these steps: ### Step 1: Evaluate the limit as \( x \) approaches 0 To find \( f(0) \), we need to compute the limit: \[ f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{10^x + 7^x - 14^x - 5^x}{1 - \cos x} \] ### Step 2: Substitute \( x = 0 \) Substituting \( x = 0 \) directly into the function gives: \[ f(0) = \frac{10^0 + 7^0 - 14^0 - 5^0}{1 - \cos(0)} = \frac{1 + 1 - 1 - 1}{1 - 1} = \frac{0}{0} \] This results in an indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} \) results in \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] We differentiate the numerator and the denominator: - **Numerator**: \[ \frac{d}{dx}(10^x + 7^x - 14^x - 5^x) = 10^x \ln(10) + 7^x \ln(7) - 14^x \ln(14) - 5^x \ln(5) \] - **Denominator**: \[ \frac{d}{dx}(1 - \cos x) = \sin x \] ### Step 4: Rewrite the limit Now we rewrite the limit using the derivatives: \[ \lim_{x \to 0} \frac{10^x \ln(10) + 7^x \ln(7) - 14^x \ln(14) - 5^x \ln(5)}{\sin x} \] ### Step 5: Substitute \( x = 0 \) again Substituting \( x = 0 \): \[ = \frac{10^0 \ln(10) + 7^0 \ln(7) - 14^0 \ln(14) - 5^0 \ln(5)}{\sin(0)} = \frac{\ln(10) + \ln(7) - \ln(14) - \ln(5)}{0} \] This still results in \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 6: Differentiate again Differentiating again: - **Numerator**: \[ \frac{d}{dx}(10^x \ln(10) + 7^x \ln(7) - 14^x \ln(14) - 5^x \ln(5)) = 10^x (\ln(10))^2 + 7^x (\ln(7))^2 - 14^x (\ln(14))^2 - 5^x (\ln(5))^2 \] - **Denominator**: \[ \frac{d}{dx}(\sin x) = \cos x \] ### Step 7: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{10^x (\ln(10))^2 + 7^x (\ln(7))^2 - 14^x (\ln(14))^2 - 5^x (\ln(5))^2}{\cos x} \] ### Step 8: Substitute \( x = 0 \) one last time Substituting \( x = 0 \): \[ = \frac{1 \cdot (\ln(10))^2 + 1 \cdot (\ln(7))^2 - 1 \cdot (\ln(14))^2 - 1 \cdot (\ln(5))^2}{1} \] ### Step 9: Simplify the expression Thus, we have: \[ f(0) = (\ln(10))^2 + (\ln(7))^2 - (\ln(14))^2 - (\ln(5))^2 \] Using the identity \( \ln(a) - \ln(b) = \ln\left(\frac{a}{b}\right) \): \[ = \ln(10) + \ln(7) - \ln(14) - \ln(5) = \ln\left(\frac{10 \cdot 7}{14 \cdot 5}\right) = \ln\left(\frac{70}{70}\right) = \ln(1) = 0 \] ### Conclusion Thus, the value of \( f(0) \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

If f(x) (2^(x)-1)/(1-3^(x)) , x != 0 is continuous at x = 0 then : f(0) =

If f(x) = (tan(x^(2)-x))/(x), x != 0 , is continuous at x = 0, then f(0)is

If f(x) =(1+sin x - cos x)/(1-sin x - cos x ), x != 0 , is continuous at x = 0 , then f(0) = ………

If f(x) f(x) = (log{(1+x)^(1+x)}-x)/(x^(2)), x != 0 , is continuous at x = 0 , then : f(0) =

If f(x) = (1+sin x - cos x)/(1- sin x - cos x ) , x != 0 is continuous at x = 0 , then : f(0) =

If f(x) is continuous at x=0 , where f(x)=(10^(x)+7^(x)-14^(x)-5^(x))/(1-cos 4x) , for x!=0 , then f(0)=

If f(x) = ((1+sinx)-sqrt(1-sinx))/(x) , x != 0 , is continuous at x = 0, then f(0) is

If f(x) = sin x - cos x , x != 0 , is continuous at x = 0, then f(0) is equal to

If f(x) = (x-e^(x) + cos 2x)/(x^(2)), x ne 0 is continuous at x = 0, then

If f(x) = (e^(x^2)-cos x)/(x^(2)), "for" x != 0 is continuous at x = 0, then value of f(0) is

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. If f(x) {:(=(1+kx)^(1//x)", if "x!= 0 ),(=e^(4)", ...

    Text Solution

    |

  2. If f(x) = {:((8^(x)-2^(x))/(k^(x)-1)", if " x != 0 ),(=2", ...

    Text Solution

    |

  3. If f(x) (10^(x)+7^(x)-14^(x)-5^(x))/(1-cos x), x != 0 is continuous ...

    Text Solution

    |

  4. If f(x) = {:(a^(2)sin^(2)x+e^(2) cos^(2)x", if " x le 0 ),(=e^(ax+b...

    Text Solution

    |

  5. Value of a so that f(x) = (sin^(2)ax)/(x^(2)), x != 0 and f(0) = 1 ...

    Text Solution

    |

  6. Value of f(0) so that f(x) = (sin(x^(2)+4x)-sin 4x)/(x tan x ) x !...

    Text Solution

    |

  7. At x = 0 , f(x) {:(=x-2", if " x lt 0 ),(= 1//2", if " x = 0...

    Text Solution

    |

  8. If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", ...

    Text Solution

    |

  9. Function f(x)={{:(2x-1", if "x le 1 ),(x^(2)", if "1 ...

    Text Solution

    |

  10. If f(x) {:(=x^(2)-1", if "x lt 3 ),(= 2ax ", if "x le 3 )...

    Text Solution

    |

  11. If f(x) {: (=x^(3)", if " x lt 1//2 ),(= ax^(2)", if " x ge 1...

    Text Solution

    |

  12. If f(x) {:(=x+1", if " x le 1 ),(= 3 + ax^(2)", if "x gt 1 ...

    Text Solution

    |

  13. If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2...

    Text Solution

    |

  14. If f(x) {:(=3k", if "x le 1/2 ),(= 3/2-2x " , if...

    Text Solution

    |

  15. If f(x) {:(=3x-4", if " 0 le x le 2 ),(= 2x + k ", if "2lt x ...

    Text Solution

    |

  16. Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"fo...

    Text Solution

    |

  17. Given f(x) {:(=x^(2)+a", if "x le 0 ),(= 2 sqrt(...

    Text Solution

    |

  18. If f(x) {:( =(sin 4x)/(5x)+a", if " x gt 0 ),(=x + 4 - b ", ...

    Text Solution

    |

  19. If f(x) {:(=x+a", if " x lt 0 ),(= x ", if " 0 le x ...

    Text Solution

    |

  20. If f(x) {:(=x^(2)+ax+b", if "0 le x lt 2 ),(= 3x+2", i...

    Text Solution

    |