Home
Class 12
MATHS
Value of a so that f(x) = (sin^(2)ax)/(...

Value of a so that `f(x) = (sin^(2)ax)/(x^(2)), x != 0 ` and f(0) = 1 is continuous at x = 0 is

A

0

B

1

C

`-1`

D

`pm1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( a \) such that the function \[ f(x) = \frac{\sin^2(ax)}{x^2} \quad \text{for } x \neq 0 \] and \( f(0) = 1 \) is continuous at \( x = 0 \), we need to ensure that: \[ \lim_{x \to 0} f(x) = f(0) \] ### Step 1: Set up the limit condition We start by setting up the limit: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{\sin^2(ax)}{x^2} \] ### Step 2: Identify the indeterminate form As \( x \to 0 \), both the numerator and denominator approach 0, leading to the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule To resolve this, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \), we can take the derivative of the numerator and the derivative of the denominator: 1. Derivative of the numerator \( \sin^2(ax) \): \[ \frac{d}{dx}(\sin^2(ax)) = 2\sin(ax)\cos(ax) \cdot a = a \sin(2ax) \] 2. Derivative of the denominator \( x^2 \): \[ \frac{d}{dx}(x^2) = 2x \] Thus, applying L'Hôpital's Rule gives us: \[ \lim_{x \to 0} \frac{\sin^2(ax)}{x^2} = \lim_{x \to 0} \frac{a \sin(2ax)}{2x} \] ### Step 4: Apply L'Hôpital's Rule again (if necessary) As \( x \to 0 \), we again have an indeterminate form \( \frac{0}{0} \). We apply L'Hôpital's Rule again: 1. Derivative of the numerator \( a \sin(2ax) \): \[ \frac{d}{dx}(a \sin(2ax)) = 2a^2 \cos(2ax) \] 2. Derivative of the denominator \( 2x \): \[ \frac{d}{dx}(2x) = 2 \] Thus, we have: \[ \lim_{x \to 0} \frac{a \sin(2ax)}{2x} = \lim_{x \to 0} \frac{2a^2 \cos(2ax)}{2} = a^2 \cos(0) = a^2 \] ### Step 5: Set the limit equal to \( f(0) \) Since we want this limit to equal \( f(0) = 1 \): \[ a^2 = 1 \] ### Step 6: Solve for \( a \) Taking the square root of both sides gives us: \[ a = \pm 1 \] ### Final Answer Thus, the values of \( a \) that make \( f(x) \) continuous at \( x = 0 \) are: \[ a = 1 \quad \text{or} \quad a = -1 \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

Value of f(0) so that f(x) = (sin(x^(2)+4x)-sin 4x)/(x tan x ) x != 0 , is continuous at x = 0 is

The value of 'a' for which f(x)= {((sin^2 ax)/(x^2)", " x ne 0 ),(1", "x=1):} is continuous at x=0 , is

Prove that f(x)={(sin^(2)ax)/(1),x!=01 and 1,x=0 is not continuous at x=0

The value of f at x =0 so that funcation f(x) = (2^(x) -2^(-x))/x , x ne 0 is continuous at x =0 is

The value of f(0) so that the function f(x) = (log(sec^2 x))/(x sin x), x != 0 , is continuous at x = 0 is

If the function f(x) = {((sin^(2)ax)/(x^(2))","," when "x != 0),(" k,"," when " x = 0):} is continuous at x = 0 then k = ?

if f(x)=(cos^(2)x-sin^(2)x-1)/(sqrt(x^(2)+1)-1),x!=0 and f(x)=k,x=0 is continuous at x=0 then k=

Find the value of a,so that f(x)={a sin{(pi)/(2)(x+1)},quad if x 0 is continuous at x=0

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. If f(x) (10^(x)+7^(x)-14^(x)-5^(x))/(1-cos x), x != 0 is continuous ...

    Text Solution

    |

  2. If f(x) = {:(a^(2)sin^(2)x+e^(2) cos^(2)x", if " x le 0 ),(=e^(ax+b...

    Text Solution

    |

  3. Value of a so that f(x) = (sin^(2)ax)/(x^(2)), x != 0 and f(0) = 1 ...

    Text Solution

    |

  4. Value of f(0) so that f(x) = (sin(x^(2)+4x)-sin 4x)/(x tan x ) x !...

    Text Solution

    |

  5. At x = 0 , f(x) {:(=x-2", if " x lt 0 ),(= 1//2", if " x = 0...

    Text Solution

    |

  6. If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", ...

    Text Solution

    |

  7. Function f(x)={{:(2x-1", if "x le 1 ),(x^(2)", if "1 ...

    Text Solution

    |

  8. If f(x) {:(=x^(2)-1", if "x lt 3 ),(= 2ax ", if "x le 3 )...

    Text Solution

    |

  9. If f(x) {: (=x^(3)", if " x lt 1//2 ),(= ax^(2)", if " x ge 1...

    Text Solution

    |

  10. If f(x) {:(=x+1", if " x le 1 ),(= 3 + ax^(2)", if "x gt 1 ...

    Text Solution

    |

  11. If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2...

    Text Solution

    |

  12. If f(x) {:(=3k", if "x le 1/2 ),(= 3/2-2x " , if...

    Text Solution

    |

  13. If f(x) {:(=3x-4", if " 0 le x le 2 ),(= 2x + k ", if "2lt x ...

    Text Solution

    |

  14. Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"fo...

    Text Solution

    |

  15. Given f(x) {:(=x^(2)+a", if "x le 0 ),(= 2 sqrt(...

    Text Solution

    |

  16. If f(x) {:( =(sin 4x)/(5x)+a", if " x gt 0 ),(=x + 4 - b ", ...

    Text Solution

    |

  17. If f(x) {:(=x+a", if " x lt 0 ),(= x ", if " 0 le x ...

    Text Solution

    |

  18. If f(x) {:(=x^(2)+ax+b", if "0 le x lt 2 ),(= 3x+2", i...

    Text Solution

    |

  19. If f(x) {:(=x^(2)/a", if " 0 le x lt 1 ),(= a", ...

    Text Solution

    |

  20. If x = a, f(x) {:(=(x^(2))/a-a", if " 0 lt x lt a ),(=0 ", ...

    Text Solution

    |