Home
Class 12
MATHS
At x = 0 , f(x) {:(=x-2", if " x lt ...

At x = 0 , `f(x) {:(=x-2", if " x lt 0 ),(= 1//2", if " x = 0 ),(=x^(2)", if " x gt 0 ):}}` is

A

continuous

B

discontinuous

C

not defined

D

undefined

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = 0 \), we need to analyze the given piecewise function: \[ f(x) = \begin{cases} x - 2 & \text{if } x < 0 \\ \frac{1}{2} & \text{if } x = 0 \\ x^2 & \text{if } x > 0 \end{cases} \] ### Step 1: Find \( f(0) \) From the definition of the function, we have: \[ f(0) = \frac{1}{2} \] **Hint:** Identify the value of the function at the point of interest, which is \( x = 0 \). ### Step 2: Calculate the left-hand limit as \( x \) approaches 0 We need to find the limit of \( f(x) \) as \( x \) approaches 0 from the left (negative side): \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x - 2) \] Substituting \( x = 0 \): \[ \lim_{x \to 0^-} f(x) = 0 - 2 = -2 \] **Hint:** When calculating the left-hand limit, use the expression that applies for \( x < 0 \). ### Step 3: Calculate the right-hand limit as \( x \) approaches 0 Now, we find the limit of \( f(x) \) as \( x \) approaches 0 from the right (positive side): \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x^2) \] Substituting \( x = 0 \): \[ \lim_{x \to 0^+} f(x) = 0^2 = 0 \] **Hint:** For the right-hand limit, use the expression that applies for \( x > 0 \). ### Step 4: Compare the limits and the function value We now compare the left-hand limit, right-hand limit, and the function value at \( x = 0 \): - Left-hand limit: \( -2 \) - Right-hand limit: \( 0 \) - Function value: \( f(0) = \frac{1}{2} \) Since: \[ \lim_{x \to 0^-} f(x) = -2 \quad \text{and} \quad \lim_{x \to 0^+} f(x) = 0 \quad \text{and} \quad f(0) = \frac{1}{2} \] These values are not equal: \[ -2 \neq \frac{1}{2} \quad \text{and} \quad 0 \neq \frac{1}{2} \] ### Conclusion Since the left-hand limit, right-hand limit, and the function value at \( x = 0 \) are not equal, the function \( f(x) \) is discontinuous at \( x = 0 \). **Final Answer:** The function is discontinuous at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

If x = a, f(x) {:(=(x^(2))/a-a", if " 0 lt x lt a ),(=0 ", if " x = a ),(= a - a^(3)/x^(2) ", if " x gt a ):}} is

If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", if " 0 lt x le 1 ),(= 4x^(2)-3x", if " 1 lt x le 2 ):} then f is

If f(x) {:( (1-cos(10x))/(x^(2)) ", if " x lt 0 ),(= a ", if " x = 0 ),(=(sqrt(x))/(sqrt(625+sqrt(x))-25)", if " x gt 0 ):} is continuous at x = 0 , then a =

If f(x) {:(=x+a", if " x lt 0 ),(= x ", if " 0 le x le 1 ),(=b-x ", if " x gt 1 ) :} is continuous in [-2,2] , then a+b is

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):}

If f(x)={(2x", for " x lt 0),(2x+1", for " x ge 0):} , then

If f(x) = {(x-1,",", x lt 0),(1/4,",",x = 0),(x^2,",",x gt 0):}

If f(x)={:{(1-x", for " 0 lt x le 1), ( 1/2 ", for " x=0):} , then in [0, 1]

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. Value of a so that f(x) = (sin^(2)ax)/(x^(2)), x != 0 and f(0) = 1 ...

    Text Solution

    |

  2. Value of f(0) so that f(x) = (sin(x^(2)+4x)-sin 4x)/(x tan x ) x !...

    Text Solution

    |

  3. At x = 0 , f(x) {:(=x-2", if " x lt 0 ),(= 1//2", if " x = 0...

    Text Solution

    |

  4. If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", ...

    Text Solution

    |

  5. Function f(x)={{:(2x-1", if "x le 1 ),(x^(2)", if "1 ...

    Text Solution

    |

  6. If f(x) {:(=x^(2)-1", if "x lt 3 ),(= 2ax ", if "x le 3 )...

    Text Solution

    |

  7. If f(x) {: (=x^(3)", if " x lt 1//2 ),(= ax^(2)", if " x ge 1...

    Text Solution

    |

  8. If f(x) {:(=x+1", if " x le 1 ),(= 3 + ax^(2)", if "x gt 1 ...

    Text Solution

    |

  9. If f(x)={((sqrt(1+px)-sqrt(1-px))/(x) ",", -1 le x lt 0),((2x+1)/(x-2...

    Text Solution

    |

  10. If f(x) {:(=3k", if "x le 1/2 ),(= 3/2-2x " , if...

    Text Solution

    |

  11. If f(x) {:(=3x-4", if " 0 le x le 2 ),(= 2x + k ", if "2lt x ...

    Text Solution

    |

  12. Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"fo...

    Text Solution

    |

  13. Given f(x) {:(=x^(2)+a", if "x le 0 ),(= 2 sqrt(...

    Text Solution

    |

  14. If f(x) {:( =(sin 4x)/(5x)+a", if " x gt 0 ),(=x + 4 - b ", ...

    Text Solution

    |

  15. If f(x) {:(=x+a", if " x lt 0 ),(= x ", if " 0 le x ...

    Text Solution

    |

  16. If f(x) {:(=x^(2)+ax+b", if "0 le x lt 2 ),(= 3x+2", i...

    Text Solution

    |

  17. If f(x) {:(=x^(2)/a", if " 0 le x lt 1 ),(= a", ...

    Text Solution

    |

  18. If x = a, f(x) {:(=(x^(2))/a-a", if " 0 lt x lt a ),(=0 ", ...

    Text Solution

    |

  19. If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ",...

    Text Solution

    |

  20. If f(x) {:(= 2x - 1 ", if " x gt 2 ),(= 2k ", if " x = 2...

    Text Solution

    |