Home
Class 12
MATHS
If f(x) {:(=x^(2)/a", if " ...

If f(x) `{:(=x^(2)/a", if " 0 le x lt 1 ),(= a", if " 1 le x lt sqrt(2) ),(=(2b^(2)-4b)/(x^(2))", if " sqrt(2) le x ) :}`
is continuous in `(0,oo)` , then the most suitable values of a and b ( in that order ) are

A

`1,-1`

B

`-1,1 + sqrt(2)`

C

`-1,1`

D

`-1,-1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the values of \( a \) and \( b \) such that the function \( f(x) \) is continuous on the interval \( (0, \infty) \), we need to ensure continuity at the points where the definition of the function changes, specifically at \( x = 1 \) and \( x = \sqrt{2} \). ### Step 1: Continuity at \( x = 1 \) We need to check the left-hand limit and the right-hand limit at \( x = 1 \): 1. **Left-hand limit as \( x \to 1^- \)**: \[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \frac{x^2}{a} = \frac{1^2}{a} = \frac{1}{a} \] 2. **Right-hand limit as \( x \to 1^+ \)**: \[ \lim_{x \to 1^+} f(x) = a \] Setting the left-hand limit equal to the right-hand limit for continuity: \[ \frac{1}{a} = a \] Multiplying both sides by \( a \) (assuming \( a \neq 0 \)): \[ 1 = a^2 \implies a = 1 \text{ or } a = -1 \] ### Step 2: Continuity at \( x = \sqrt{2} \) Next, we check the continuity at \( x = \sqrt{2} \): 1. **Left-hand limit as \( x \to \sqrt{2}^- \)**: \[ \lim_{x \to \sqrt{2}^-} f(x) = a \] 2. **Right-hand limit as \( x \to \sqrt{2}^+ \)**: \[ \lim_{x \to \sqrt{2}^+} f(x) = \lim_{x \to \sqrt{2}^+} \frac{2b^2 - 4b}{x^2} = \frac{2b^2 - 4b}{(\sqrt{2})^2} = \frac{2b^2 - 4b}{2} = b^2 - 2b \] Setting the left-hand limit equal to the right-hand limit for continuity: \[ a = b^2 - 2b \] ### Step 3: Solving for \( b \) Now we have two cases for \( a \): 1. **Case 1: \( a = 1 \)** \[ 1 = b^2 - 2b \implies b^2 - 2b - 1 = 0 \] Using the quadratic formula: \[ b = \frac{2 \pm \sqrt{4 + 4}}{2} = \frac{2 \pm 2\sqrt{2}}{2} = 1 \pm \sqrt{2} \] 2. **Case 2: \( a = -1 \)** \[ -1 = b^2 - 2b \implies b^2 - 2b + 1 = 0 \implies (b - 1)^2 = 0 \implies b = 1 \] ### Conclusion The suitable values of \( (a, b) \) are: - From Case 1: \( (1, 1 + \sqrt{2}) \) or \( (1, 1 - \sqrt{2}) \) - From Case 2: \( (-1, 1) \) Thus, the most suitable values of \( a \) and \( b \) in order are: \[ \text{Answer: } (1, 1 + \sqrt{2}) \text{ or } (1, 1 - \sqrt{2}) \text{ or } (-1, 1) \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

If : f(x) {:(=ax^(2)-b", ... " 0 le x lt 1 ),(=2", ... "x=1 ),(= x+1", ... " 1 lt x le 2 ) :} is continuous at x= 1 , then the most suitable values of a and b are

If f(x)={:{(ax^(2)-b", for " 0 le x lt1),(2", for " x=1),(x+1", for " 1 lt x le 2):} is continuous at x=1 , then the most suitable values of a, b are

If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", if " 0 lt x le 1 ),(= 4x^(2)-3x", if " 1 lt x le 2 ):} then f is

f(x) {:(=(x^(2))/2" , if " 0 le x lt 1 ),(= 2x^(2)-2x +3/2 ", if " 1 le x le 2 ):} is discontinuous at x = ……

If f(x)={:{(x", for " 0 le x lt 1/2),(1-x", for " 1/2 le x lt 1):} , then

Let a , b in R,(a ne 0) . If the funtion f defined as f(x)={{:(,(2x^(2))/(a),0 le x lt 1),(,a,1 le x lt sqrt2),(,(2b^(2)-4b)/(x^(3)),sqrt2lt x lt oo):} is a continous in [0,oo) . Then, (a,b)=

If f(x) {:(=x^(2)-1", if "x lt 3 ),(= 2ax ", if "x le 3 ) :} is continuous at x = 3 , then a = ……

The function f(x)={{:(,(x^(2))/(a),0 le x lt 1),(,a,1le x lt sqrt2),(,(2b^(2)-4b)/(x^(2)),sqrt2 le x lt oo):} is a continuous for 0 le x lt oo . Then which of the following statements is correct?

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):}

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. If f(x) {:(=x+a", if " x lt 0 ),(= x ", if " 0 le x ...

    Text Solution

    |

  2. If f(x) {:(=x^(2)+ax+b", if "0 le x lt 2 ),(= 3x+2", i...

    Text Solution

    |

  3. If f(x) {:(=x^(2)/a", if " 0 le x lt 1 ),(= a", ...

    Text Solution

    |

  4. If x = a, f(x) {:(=(x^(2))/a-a", if " 0 lt x lt a ),(=0 ", ...

    Text Solution

    |

  5. If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ",...

    Text Solution

    |

  6. If f(x) {:(= 2x - 1 ", if " x gt 2 ),(= 2k ", if " x = 2...

    Text Solution

    |

  7. If f(x) (2^(x+2)-16)/(4^(x)-2^(4)), x != 2 is continuous at x = 2...

    Text Solution

    |

  8. If f(x) =(1+sin x - cos x)/(1-sin x - cos x ), x != 0 , is continu...

    Text Solution

    |

  9. f(x) {:(=(x^(2))/2" , if " 0 le x lt 1 ),(= ...

    Text Solution

    |

  10. If f(x) {:(=px-q", if " x le 1 ),(= 3x ", if " 1 lt x l...

    Text Solution

    |

  11. Given f(x){:(= (sin [(2k-3)x])/(4x)", if " x lt0), (= k+1", ...

    Text Solution

    |

  12. The value of f(0) so that f(x) = ((4^(x)-1)^(3))/(sin(x/4)log(1+(x^(...

    Text Solution

    |

  13. lim(x to 0) (|x|)/x =

    Text Solution

    |

  14. If f(x) {:( (1-cos(10x))/(x^(2)) ", if " x lt 0 ),(= a ...

    Text Solution

    |

  15. If f(x) {:(=(log (1+3x )-log(1-2x))/x", if " x != 0 ),(=a", ...

    Text Solution

    |

  16. If f(x) {:(=ax^(2)+b", if " 0 le x lt 1 ),(=x+3 ", if " 1 lt x...

    Text Solution

    |

  17. If f(t) = 1/(t^(2)-t-6) and t = 1/(x-2) then the values of x which ma...

    Text Solution

    |

  18. The value of f(0) that the function f(x) = ( root3 (1+x)-root 4 (...

    Text Solution

    |

  19. The function f(x) = (x^(3)+x^(2)-16x+20)/(x-2) is not defined at x = 2...

    Text Solution

    |

  20. If f(x) {:(=(x^(n)-2^(n))/(x-2)", if " x!=2 ),(= 1024 ", ...

    Text Solution

    |