Home
Class 12
MATHS
If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2...

If f(x) `{:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ", if " x = 2 ) :}` is continuous at x = 2 , then

A

`k=2`

B

`k=0`

C

`k=20`

D

`k=7`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( k \) that makes the function \( f(x) \) continuous at \( x = 2 \), we need to ensure that the limit of \( f(x) \) as \( x \) approaches 2 is equal to \( f(2) \). ### Step-by-Step Solution: 1. **Define the function**: \[ f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x-2)^2} & \text{if } x \neq 2 \\ k & \text{if } x = 2 \end{cases} \] 2. **Set up the continuity condition**: For \( f(x) \) to be continuous at \( x = 2 \), we need: \[ \lim_{x \to 2} f(x) = f(2) = k \] 3. **Calculate the limit**: We first need to evaluate \( \lim_{x \to 2} \frac{x^3 + x^2 - 16x + 20}{(x-2)^2} \). Plugging \( x = 2 \) directly into the function gives: \[ \frac{2^3 + 2^2 - 16 \cdot 2 + 20}{(2-2)^2} = \frac{8 + 4 - 32 + 20}{0} = \frac{0}{0} \] This is an indeterminate form, so we can apply L'Hôpital's Rule. 4. **Apply L'Hôpital's Rule**: Differentiate the numerator and the denominator: - Derivative of the numerator \( x^3 + x^2 - 16x + 20 \): \[ 3x^2 + 2x - 16 \] - Derivative of the denominator \( (x-2)^2 \): \[ 2(x-2) \] Now we have: \[ \lim_{x \to 2} \frac{3x^2 + 2x - 16}{2(x-2)} \] 5. **Evaluate the limit again**: Plugging \( x = 2 \) into the new limit: \[ \frac{3(2^2) + 2(2) - 16}{2(2-2)} = \frac{12 + 4 - 16}{0} = \frac{0}{0} \] This is still an indeterminate form, so we apply L'Hôpital's Rule again. 6. **Differentiate again**: - Derivative of the new numerator \( 3x^2 + 2x - 16 \): \[ 6x + 2 \] - Derivative of the new denominator \( 2(x-2) \): \[ 2 \] Now we have: \[ \lim_{x \to 2} \frac{6x + 2}{2} \] 7. **Evaluate the limit**: Plugging \( x = 2 \): \[ \frac{6(2) + 2}{2} = \frac{12 + 2}{2} = \frac{14}{2} = 7 \] 8. **Set the limit equal to \( k \)**: Since we found that: \[ \lim_{x \to 2} f(x) = 7 \] We set this equal to \( k \): \[ k = 7 \] ### Final Answer: Thus, the value of \( k \) that makes \( f(x) \) continuous at \( x = 2 \) is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

f(x)={x+2,x 3, is continuous at x=3

If f(x) {:((3^(x+2)-81)/(9^(x)-9^(2)) ", ... "x != 2 ),(= k. log 3 " , ... " x = 2 ):} is continuous at x = 2 , then : k =

If f(x) {:(=3x-4", if " 0 le x le 2 ),(= 2x + k ", if "2lt x le 3 ):} is continuous x = 2 , then k = ……

If f(x) = {:((8^(x)-2^(x))/(k^(x)-1)", if " x != 0 ),(=2", if " x = 0 ):} is continuous at x = 0, then k = ….

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

If f(x) {:(=3k", if "x le 1/2 ),(= 3/2-2x " , if " 1/2 lt x lt 1 ):} is continuous at x = 1/2 , " then " k = …….

If f(x) {:(= 2x - 1 ", if " x gt 2 ),(= 2k ", if " x = 2 ), (=x^(2)-1", if " x lt 2 ) :} is continuous on R , then k = …….

Let f(x) ={{:((x^(3)+x^(2)-16x+20)//(x-2)^(2)"," if x ne 2),(R", "if x = 2):} If f(x) is continuous for all x, then k = … .

f(x) ={{:((2^(x+2)-16)/(4^(x)-16), if x ne 2 ),(k, if x = 2):} , x = 2 .

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. If f(x) {:(=x^(2)/a", if " 0 le x lt 1 ),(= a", ...

    Text Solution

    |

  2. If x = a, f(x) {:(=(x^(2))/a-a", if " 0 lt x lt a ),(=0 ", ...

    Text Solution

    |

  3. If f(x) {:(=(x^(3)+x^2-16x+20)/((x-2)^(2)) ", if " x!= 2 ), (=k ",...

    Text Solution

    |

  4. If f(x) {:(= 2x - 1 ", if " x gt 2 ),(= 2k ", if " x = 2...

    Text Solution

    |

  5. If f(x) (2^(x+2)-16)/(4^(x)-2^(4)), x != 2 is continuous at x = 2...

    Text Solution

    |

  6. If f(x) =(1+sin x - cos x)/(1-sin x - cos x ), x != 0 , is continu...

    Text Solution

    |

  7. f(x) {:(=(x^(2))/2" , if " 0 le x lt 1 ),(= ...

    Text Solution

    |

  8. If f(x) {:(=px-q", if " x le 1 ),(= 3x ", if " 1 lt x l...

    Text Solution

    |

  9. Given f(x){:(= (sin [(2k-3)x])/(4x)", if " x lt0), (= k+1", ...

    Text Solution

    |

  10. The value of f(0) so that f(x) = ((4^(x)-1)^(3))/(sin(x/4)log(1+(x^(...

    Text Solution

    |

  11. lim(x to 0) (|x|)/x =

    Text Solution

    |

  12. If f(x) {:( (1-cos(10x))/(x^(2)) ", if " x lt 0 ),(= a ...

    Text Solution

    |

  13. If f(x) {:(=(log (1+3x )-log(1-2x))/x", if " x != 0 ),(=a", ...

    Text Solution

    |

  14. If f(x) {:(=ax^(2)+b", if " 0 le x lt 1 ),(=x+3 ", if " 1 lt x...

    Text Solution

    |

  15. If f(t) = 1/(t^(2)-t-6) and t = 1/(x-2) then the values of x which ma...

    Text Solution

    |

  16. The value of f(0) that the function f(x) = ( root3 (1+x)-root 4 (...

    Text Solution

    |

  17. The function f(x) = (x^(3)+x^(2)-16x+20)/(x-2) is not defined at x = 2...

    Text Solution

    |

  18. If f(x) {:(=(x^(n)-2^(n))/(x-2)", if " x!=2 ),(= 1024 ", ...

    Text Solution

    |

  19. If the function f(x) {:( = 4(5^(x))",....... " x lt0),(= 8a+x", ........

    Text Solution

    |

  20. If f(x) {:( =(x-|x|)/x", ... " x!=0 ),(=2", ... " x...

    Text Solution

    |