Home
Class 12
MATHS
The value of f(0) so that f(x) = ((4^(...

The value of f(0) so that ` f(x) = ((4^(x)-1)^(3))/(sin(x/4)log(1+(x^(2))/3)) , x != 0 , ` is continuous everywhere in R, is

A

`3(log4)^(3)`

B

`4(log4)^(3)`

C

`12(log 4)^(3)`

D

`15(log 4)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f(0) \) such that the function \[ f(x) = \frac{(4^x - 1)^3}{\sin\left(\frac{x}{4}\right) \log\left(1 + \frac{x^2}{3}\right)} \] is continuous everywhere in \( \mathbb{R} \), we need to ensure that \[ \lim_{x \to 0} f(x) = f(0). \] ### Step 1: Evaluate the limit as \( x \to 0 \) First, we need to find \( \lim_{x \to 0} f(x) \). Substituting \( x = 0 \) directly into the function gives us an indeterminate form \( \frac{0}{0} \). Therefore, we need to apply L'Hôpital's Rule or simplify the expression. ### Step 2: Simplify the numerator Using the fact that \( 4^x - 1 \) can be approximated as \( \log(4) \cdot x \) when \( x \) is near 0, we have: \[ 4^x - 1 \approx \log(4) \cdot x \quad \text{as } x \to 0. \] Thus, \[ (4^x - 1)^3 \approx (\log(4) \cdot x)^3 = \log(4)^3 \cdot x^3. \] ### Step 3: Simplify the denominator Next, we simplify the denominator. For small \( x \): \[ \sin\left(\frac{x}{4}\right) \approx \frac{x}{4} \quad \text{and} \quad \log\left(1 + \frac{x^2}{3}\right) \approx \frac{x^2}{3}. \] Thus, the denominator becomes: \[ \sin\left(\frac{x}{4}\right) \log\left(1 + \frac{x^2}{3}\right) \approx \left(\frac{x}{4}\right) \left(\frac{x^2}{3}\right) = \frac{x^3}{12}. \] ### Step 4: Substitute back into the limit Now substituting back into the limit, we have: \[ f(x) = \frac{\log(4)^3 \cdot x^3}{\frac{x^3}{12}} = 12 \log(4)^3. \] ### Step 5: Evaluate the limit Taking the limit as \( x \to 0 \): \[ \lim_{x \to 0} f(x) = 12 \log(4)^3. \] ### Step 6: Set \( f(0) \) To ensure continuity, we set: \[ f(0) = 12 \log(4)^3. \] Thus, the value of \( f(0) \) that makes the function continuous everywhere in \( \mathbb{R} \) is: \[ \boxed{12 \log(4)^3}. \] ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

Find the value of f(0) so that the function f(x)=1/24 (4^x-1)^3/(sin (x/4) log (1+x^2/3)(log 2)^3), x ne 0 is continuous in R is .

The value of f(0) so that the function f(x) = (log(sec^2 x))/(x sin x), x != 0 , is continuous at x = 0 is

The value of lim_(x rarr0)((4^(x)-1)^(3))/(sin backslash(x)/(4)*log(1+(x^(2))/(3))) equals

f(x)=((4^(x)-1)^(3))/(sin((x)/(p))log(1+(x^(2))/(3))) is continuous at x=0 and f(0)=12(ln4)^(3) then p=

Value of f(0) so that f(x) = (sin(x^(2)+4x)-sin 4x)/(x tan x ) x != 0 , is continuous at x = 0 is

Value of f (pi/4) so that the function f(x) = (tan(pi/4-x))/(cot 2x), x != pi/4 is continuous everywhere is

Determine f(0) so that the function f(x) defined by f(x)=((4^(x)-1)^(3))/(sin(x)/(4)log(1+(x^(2))/(3))) becomes continuous at x=0

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. If f(x) {:(=px-q", if " x le 1 ),(= 3x ", if " 1 lt x l...

    Text Solution

    |

  2. Given f(x){:(= (sin [(2k-3)x])/(4x)", if " x lt0), (= k+1", ...

    Text Solution

    |

  3. The value of f(0) so that f(x) = ((4^(x)-1)^(3))/(sin(x/4)log(1+(x^(...

    Text Solution

    |

  4. lim(x to 0) (|x|)/x =

    Text Solution

    |

  5. If f(x) {:( (1-cos(10x))/(x^(2)) ", if " x lt 0 ),(= a ...

    Text Solution

    |

  6. If f(x) {:(=(log (1+3x )-log(1-2x))/x", if " x != 0 ),(=a", ...

    Text Solution

    |

  7. If f(x) {:(=ax^(2)+b", if " 0 le x lt 1 ),(=x+3 ", if " 1 lt x...

    Text Solution

    |

  8. If f(t) = 1/(t^(2)-t-6) and t = 1/(x-2) then the values of x which ma...

    Text Solution

    |

  9. The value of f(0) that the function f(x) = ( root3 (1+x)-root 4 (...

    Text Solution

    |

  10. The function f(x) = (x^(3)+x^(2)-16x+20)/(x-2) is not defined at x = 2...

    Text Solution

    |

  11. If f(x) {:(=(x^(n)-2^(n))/(x-2)", if " x!=2 ),(= 1024 ", ...

    Text Solution

    |

  12. If the function f(x) {:( = 4(5^(x))",....... " x lt0),(= 8a+x", ........

    Text Solution

    |

  13. If f(x) {:( =(x-|x|)/x", ... " x!=0 ),(=2", ... " x...

    Text Solution

    |

  14. If f(x) is continuous and f(9/2)=2/9 , then : lim(x to 0) f((1-cos 3x...

    Text Solution

    |

  15. If f(x) = 1/(1-x), then the points of dicontinuity of the composite...

    Text Solution

    |

  16. Value of f(pi/4) so that the function f(x) = (tan(pi/4-x))/(cot 2x), ...

    Text Solution

    |

  17. If the function f(x) {:(=5x-4", ... "0 lt x le 1 ), (=4x^(2)+...

    Text Solution

    |

  18. If f(x) is continuous at x=3, where f(x)={:{((x^(2)-9)/(x-3),", for"x...

    Text Solution

    |

  19. If f(x) {:( =(sin pix)/(5x)", if " x!=0),(=k ", if " x = ...

    Text Solution

    |

  20. If f(x) = |x-2|, then :

    Text Solution

    |