Home
Class 12
MATHS
If : f(x) {: ((1-sin x)/(pi-2x)", ...

If : f(x) ` {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ", ... " x = pi//2):}` is continuous at ` x = pi//2 ` , then : `lambda = `

A

`-1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) such that the function \( f(x) \) is continuous at \( x = \frac{\pi}{2} \), we need to ensure that: \[ \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right) \] Given that: \[ f(x) = \frac{1 - \sin x}{\pi - 2x} \quad \text{for } x \neq \frac{\pi}{2} \] \[ f\left(\frac{\pi}{2}\right) = \lambda \] ### Step 1: Calculate the limit as \( x \) approaches \( \frac{\pi}{2} \) We first compute the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\pi - 2x} \] Substituting \( x = \frac{\pi}{2} \): \[ 1 - \sin\left(\frac{\pi}{2}\right) = 1 - 1 = 0 \] \[ \pi - 2\left(\frac{\pi}{2}\right) = \pi - \pi = 0 \] Thus, we have an indeterminate form \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] where \( f(x) = 1 - \sin x \) and \( g(x) = \pi - 2x \). Calculating the derivatives: - The derivative of the numerator \( f'(x) = -\cos x \) - The derivative of the denominator \( g'(x) = -2 \) Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-2} = \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{2} \] ### Step 3: Evaluate the limit Now substituting \( x = \frac{\pi}{2} \): \[ \cos\left(\frac{\pi}{2}\right) = 0 \] Thus, the limit becomes: \[ \lim_{x \to \frac{\pi}{2}} \frac{\cos x}{2} = \frac{0}{2} = 0 \] ### Step 4: Set the limit equal to \( \lambda \) Since we want the function to be continuous at \( x = \frac{\pi}{2} \): \[ \lambda = \lim_{x \to \frac{\pi}{2}} f(x) = 0 \] ### Conclusion Therefore, the value of \( \lambda \) is: \[ \lambda = 0 \] ---
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {((1-sinzx)/(pi-2x), ",", x != pi/2),(lambda, ",", x = pi/2):} , be continuous at x = (pi)/2 , then the value of lambda is

If f(x)={:{((cot x-cos x)/((pi-2x)^(3))", for " x != (pi)/(2)),(k ", for " x = pi/2):} is continuous at x= pi/2 , where , then k=

If f (x) = {{:((1- sqrt2sin x )/(pi - 4 x )",",, x ne (pi)/(4)),(a" "",",,x = (pi)/(4)):} is continuous at x = (pi)/(4) , then a =

If function f(x) given by f(x)={{:(,(sin x)^(1//(pi-2x)),xne pi//2),(,lambda,x=pi//2):} is continous at x=(pi)/(2) then lambda =

If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) be continuous at x=pi/3 , then value of lamda is (A) -1 (B) 1 (C) 0 (D) 2

If f(x)={{:((1-sinx)/(pi-2x),,","xne(pi)/(2)),(lambda,,","x=(pi)/(2)):},"be continuous at "x=(pi)/(2), then value of lambda is

If f(x) = {(ax+1,",",x le (pi)/(2)),(sin x+ b,",",x gt (pi)/(2)):} is continuous at x = (pi)/2 , then

If f(x) is continuous at x=pi/2 , where f(x)={:{((1-sinx)/(pi-2x)", for " x!= pi/2),(lambda", for " x=pi/2):} ,then lambda=

Prove that f(x)=sin x is continuous at x=(pi)/(2)

Examine the function, f(x) = {{:((cos x)/(pi//2 -x)",",x ne pi//2),(1",",x = pi//2):} for continuity at x = pi//2

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. f:R->R is defined by f(x)={(cos3x-cosx)/(x^2), x!=0lambda, x=0 and f ...

    Text Solution

    |

  2. Function f(x) = (1-cos 4x)//(8x^(2)), " where " x != 0 , and f(x) = k...

    Text Solution

    |

  3. If : f(x) {: ((1-sin x)/(pi-2x)", ... " x != pi//2 ),(=lambda ",...

    Text Solution

    |

  4. If f(x)=(sqrt(a^2-a x+x^2)-sqrt(a^2+a x+x^2))/(sqrt(a+x)-sqrt(a-x)) is...

    Text Solution

    |

  5. If S(1)= sum(r=1)^(n) r , S(2) = sum(r=1)^(n) r^(2),S(3) = sum(r=1)^(n...

    Text Solution

    |

  6. underset(x to (pi)/(2))(lim)(a^(cot x) -a^(cosx))/(cot x- cot x ) is ...

    Text Solution

    |

  7. lim (x to oo) (1-4/(x-1))^(3x-1)=

    Text Solution

    |

  8. If alpha is not an integral multiple of pi , then : lim(x to alpha)...

    Text Solution

    |

  9. lim(h -> 0) (sin(a+3h)-3sin(a+2h)+3sin(a+h)-sina)/h^3 =

    Text Solution

    |

  10. lim (x to n ) (-1)^([x])=

    Text Solution

    |

  11. Evaluate: ("lim")(hvec0)(2[sqrt(3)sin(pi/6+h)-cos(pi/6+h)])/(sqrt(3)h(...

    Text Solution

    |

  12. If f(x) = 0 is a quadratic equation such that f(-pi) =f(pi) = 0 and f(...

    Text Solution

    |

  13. f(x)={((8^x-4^x-2^x+1)/x^2, ;xgt0),(e^xsinx+pix+lambda.ln4,;xle0):} ...

    Text Solution

    |

  14. If f(x) f(x) = (log{(1+x)^(1+x)}-x)/(x^(2)), x != 0 , is continuous a...

    Text Solution

    |

  15. If the function f as defined below is continuous at x=0find the values...

    Text Solution

    |

  16. Let : f(x) {:(=(1-cos 4x)/(x^(2))", ... "x lt 0 ),(= a", ...

    Text Solution

    |

  17. The function (x^(3)-8)/(x^(2)-x-20) is continuous over the domain :

    Text Solution

    |

  18. The value of a and b such that the function f(x) {:{(-2 sin x", ...

    Text Solution

    |

  19. The value of lim(x to e) (log x^(2)-2)/(sqrt(x)-sqrt(e)) is

    Text Solution

    |

  20. If f(x) {:(= 4x - 3 ", for " 0 lt x le 2 ),(= 4x+ 3k " , for " ...

    Text Solution

    |