Home
Class 12
MATHS
If f(x) {:( =((2^(x)-1)^(2))/(sin x.log...

If f(x) ` {:( =((2^(x)-1)^(2))/(sin x.log(1+x))", if " x != 0 ),(= 2 log 2", if " x = 0 " ) :}` then , at x = 0 the function f is

A

continuous at x = 0 ,1

B

discontinuous

C

not defined

D

algebraic

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is continuous at \( x = 0 \), we need to check if the following condition holds: \[ \lim_{x \to 0} f(x) = f(0) \] Given the function: \[ f(x) = \begin{cases} \frac{(2^x - 1)^2}{\sin x \cdot \log(1+x)} & \text{if } x \neq 0 \\ 2 \log 2 & \text{if } x = 0 \end{cases} \] ### Step 1: Calculate \( f(0) \) From the definition of the function, we have: \[ f(0) = 2 \log 2 \] ### Step 2: Calculate \( \lim_{x \to 0} f(x) \) We need to evaluate: \[ \lim_{x \to 0} \frac{(2^x - 1)^2}{\sin x \cdot \log(1+x)} \] As \( x \to 0 \), both the numerator and denominator approach 0, leading to the indeterminate form \( \frac{0}{0} \). ### Step 3: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule. We differentiate the numerator and denominator: 1. **Numerator**: Differentiate \( (2^x - 1)^2 \) - Let \( u = 2^x - 1 \), then \( \frac{du}{dx} = 2^x \ln(2) \) - Thus, \( \frac{d}{dx}[(2^x - 1)^2] = 2(2^x - 1)(2^x \ln(2)) \) 2. **Denominator**: Differentiate \( \sin x \cdot \log(1+x) \) using the product rule: - \( \frac{d}{dx}[\sin x] = \cos x \) - \( \frac{d}{dx}[\log(1+x)] = \frac{1}{1+x} \) - So, \( \frac{d}{dx}[\sin x \cdot \log(1+x)] = \sin x \cdot \frac{1}{1+x} + \log(1+x) \cdot \cos x \) ### Step 4: Evaluate the limit again Now we evaluate: \[ \lim_{x \to 0} \frac{2(2^x - 1)(2^x \ln(2))}{\sin x \cdot \frac{1}{1+x} + \log(1+x) \cdot \cos x} \] Substituting \( x = 0 \): - The numerator becomes \( 2(0)(\ln(2)) = 0 \). - The denominator becomes \( 0 + 0 = 0 \). We still have \( \frac{0}{0} \), so we apply L'Hôpital's Rule again. ### Step 5: Repeat L'Hôpital's Rule Continue differentiating until we can evaluate the limit without indeterminate forms. After applying L'Hôpital's Rule multiple times, we find: \[ \lim_{x \to 0} \frac{(2^x - 1)^2}{\sin x \cdot \log(1+x)} = \lim_{x \to 0} \frac{(2^x - 1)^2}{x^2} = (\log 2)^2 \] ### Step 6: Final Limit Calculation Thus, we find: \[ \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{(2^x - 1)^2}{\sin x \cdot \log(1+x)} = 0 \] ### Step 7: Compare with \( f(0) \) Now we compare: \[ \lim_{x \to 0} f(x) = 0 \quad \text{and} \quad f(0) = 2 \log 2 \] Since \( 0 \neq 2 \log 2 \), we conclude that: \[ \lim_{x \to 0} f(x) \neq f(0) \] ### Conclusion Thus, the function \( f \) is discontinuous at \( x = 0 \).
Promotional Banner

Topper's Solved these Questions

  • APPLICATIONS OF DEFINITE INTEGRALS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|11 Videos
  • DIFFERENTIAL EQUATIONS

    MARVEL PUBLICATION|Exercise TEST YOUR GRASP|14 Videos

Similar Questions

Explore conceptually related problems

f(x)=((2^(x)-1)^(2))/(tan x log(1+x)),x!=0 and f(x)=2log2,x=0 at x=0 is:

If f(x) {:(=(log (1+3x )-log(1-2x))/x", if " x != 0 ),(=a", if " x =0 ):} is continuous at x = 0 , then a =

If f(x) ={((5^(x)-e^(x))/(sin 2x),",",x != 0),(1/2(log 5+1),",",x = 0):} , then

If f(x) {:(=(log (1-2x)-log(1-3x))/x", " x != 0 ),(=a", " x = 0 ):} is continuous at x = 0 , then : a =

If f(x)=(e^(2x)-(1+4x)^(1/2))/(ln(1-x^(2))) for x!=0, then f has

f(x)={(e^(x)-1)/(log(1+2x)),, if x!=0quad 7,quad if x=0 at x=0

If f(x) is continuous at x=0 , where f(x)={:{(((e^(x)-1)^(4))/(sin(x^(2)/k^(2))log(1+ x^(2)/(2)))", for " x!=0),(8", for " x=0):} , then k=

If f(x)=((8^(x)-1)^(2))/(sin x log (1+ x/4)) in [-1, 1] - {0} , then for removable discontinuity of f at x=0, f(0)=

MARVEL PUBLICATION-CONTINUITY F FUNCTIONS-MULTIPLE CHOICE QUESTIONS
  1. The function (x^(3)-8)/(x^(2)-x-20) is continuous over the domain :

    Text Solution

    |

  2. The value of a and b such that the function f(x) {:{(-2 sin x", ...

    Text Solution

    |

  3. The value of lim(x to e) (log x^(2)-2)/(sqrt(x)-sqrt(e)) is

    Text Solution

    |

  4. If f(x) {:(= 4x - 3 ", for " 0 lt x le 2 ),(= 4x+ 3k " , for " ...

    Text Solution

    |

  5. If f(x) {: (=(x^(2)-2x-3)/(x-3)" , for " 0 le x le 4 ),(= (x^(2)-1)/(x...

    Text Solution

    |

  6. If the function f(x) {: (3 sin x - sin 3x)/(x^(3)), x != 0 , is co...

    Text Solution

    |

  7. If f(x) (2^(x)-1)/(1-3^(x)) , x != 0 is continuous at x = 0 then : ...

    Text Solution

    |

  8. If f(0) = 2 , and f(x) = (1-cos kx)/(x.sin x) , x != 0 , is continuo...

    Text Solution

    |

  9. If f(x) {:(=(x^(n)-2^(n))/(x-2)", if " x!=2 ),(= 1024 ", ...

    Text Solution

    |

  10. If f(x) {:((3^(x+2)-81)/(9^(x)-9^(2)) ", ... "x != 2 ),(= k....

    Text Solution

    |

  11. If f(x)= {:(2x^(2)-3", ... if " x lt2 ),(5ax ", ... i...

    Text Solution

    |

  12. If f(x) {: (=(sqrt(1+px) - sqrt(1- px))/x", if "-1/2 le x lt 0 ),(=...

    Text Solution

    |

  13. If f(x) {:(=(sin4x)/(5x)+a", if " x gt 0 ),( = 6x+4 -b...

    Text Solution

    |

  14. If f(x) =1/x for all x != 0 then : lim (x rarr 0 ) f((1-cos 5x)/x)=

    Text Solution

    |

  15. If f(x) {:(=(log (1-2x)-log(1-3x))/x", " x != 0 ),(=a", ...

    Text Solution

    |

  16. If f(x) {:(=-x^(2)", if " x le 0 ), (= 5x - 4 ", ...

    Text Solution

    |

  17. If f(x) {:( =((2^(x)-1)^(2))/(sin x.log(1+x))", if " x != 0 ),(= ...

    Text Solution

    |

  18. If f(t) = 1/(t^(2)-t-6) and t = 1/(x-2) then the values of x which ma...

    Text Solution

    |

  19. If f(x) = (1+sin x - cos x)/(1- sin x - cos x ) , x != 0 is continuo...

    Text Solution

    |

  20. If f(x) {:(=ax^(2)+b", if " 0 le x lt 1 ),(=x+3 ", if " 1 lt x...

    Text Solution

    |