Home
Class 12
MATHS
The unit vectors parallel to the resulta...

The unit vectors parallel to the resultant vectors of `2hat(i)+4hat(j)-5hat(k) and hat(i)+2hat(j)+3hat(k)` is

A

`(3hat(i)+6hat(j)-2hat(k))/(7)`

B

`(hat(i)+hat(j)+hat(k))/(sqrt(3))`

C

`(hat(i)+hat(j)+2hat(k))/(sqrt(6))`

D

`(-hat(i)-hat(j)+8hat(k))/(sqrt(69))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector parallel to the resultant of the vectors \( \mathbf{a} = 2\hat{i} + 4\hat{j} - 5\hat{k} \) and \( \mathbf{b} = \hat{i} + 2\hat{j} + 3\hat{k} \), we can follow these steps: ### Step 1: Find the resultant vector The resultant vector \( \mathbf{u} \) is obtained by adding the two vectors \( \mathbf{a} \) and \( \mathbf{b} \). \[ \mathbf{u} = \mathbf{a} + \mathbf{b} = (2\hat{i} + 4\hat{j} - 5\hat{k}) + (\hat{i} + 2\hat{j} + 3\hat{k}) \] ### Step 2: Combine the components Now, we combine the \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) components: \[ \mathbf{u} = (2 + 1)\hat{i} + (4 + 2)\hat{j} + (-5 + 3)\hat{k} \] \[ \mathbf{u} = 3\hat{i} + 6\hat{j} - 2\hat{k} \] ### Step 3: Calculate the magnitude of the resultant vector Next, we need to find the magnitude of the vector \( \mathbf{u} \): \[ |\mathbf{u}| = \sqrt{(3)^2 + (6)^2 + (-2)^2} \] \[ |\mathbf{u}| = \sqrt{9 + 36 + 4} = \sqrt{49} = 7 \] ### Step 4: Find the unit vector The unit vector \( \hat{u} \) in the direction of \( \mathbf{u} \) is given by: \[ \hat{u} = \frac{\mathbf{u}}{|\mathbf{u}|} = \frac{3\hat{i} + 6\hat{j} - 2\hat{k}}{7} \] ### Final Result Thus, the unit vector parallel to the resultant vector is: \[ \hat{u} = \frac{3}{7}\hat{i} + \frac{6}{7}\hat{j} - \frac{2}{7}\hat{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

What is the value of b such that the scalar product of the vector hat(i) + hat(j) + hat(k) with the unit vector parallel to the sum of the vectors 2hat(i) + 4hat(j)-5hat(k) and b hat(i) + 2hat(j) + 3hat(k) is unity ?

What is the value of b such that the scalar product of the vector hat(i)+hat(j)+hat(k) with the unit vector parallel to the sum of the vectors 2hat(i)+4hat(j)-5 hat(k) and b hat(i)+2hat(j)+3hat(k) is unity ?

The unit vector parallel to the resultant of the vectors vec(A)= 4hat(i)+3hat(j)+6hat(k) and vec(B)= -hat(i)+3hat(j)-8hat(k) is

The unit vector parallel to the resultant of the vectors vec(A) = hat(i) + 2 hat(j) - hat(k) and vec(B) = 2 hat(i) + 4 hat(j) - hat(k) is

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

A unit vector in the dirction of resultant vector of vec(A)= -2hat(i)+3hat(j)+hat(k) and vec(B)= hat(i)+2hat(j)-4hat(k) is

Projection of the vector 2hat(i) + 3hat(j) + 2hat(k) on the vector hat(i) - 2hat(j) + 3hat(k) is :

Find a vector of magnitude 5 units,and parallel to the resultant of the vectors vec a=2hat i+3hat j-hat k and vec b=hat i-2hat j+hat k

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(p), overline(q), overline(r) are any three vectors, which...

    Text Solution

    |

  2. If overline(a) and overline(b) are parallel vectors [[overline(a), ove...

    Text Solution

    |

  3. The unit vectors parallel to the resultant vectors of 2hat(i)+4hat(j)-...

    Text Solution

    |

  4. If hat(e1), hat(e2) and hat(e1)+hat(e2) are unit vectors, then angle b...

    Text Solution

    |

  5. (overline(a)*hat(i))hat(i)+(overline(a)*hat(j))hat(j)+(overline(a)*hat...

    Text Solution

    |

  6. If overline(a)*hat(i)=overline(a)*(2hat(i)+hat(j))=overline(a)*(hat(i)...

    Text Solution

    |

  7. If overline(c)=5overline(a)-4overline(b) and overline(a) is perpendicu...

    Text Solution

    |

  8. If overline(c)=2overline(a)+5overline(b), |overline(a)|=a, |overline(b...

    Text Solution

    |

  9. If the angle between overline(b) and overline(c) is (pi)/(3) and overl...

    Text Solution

    |

  10. If the angle between overline(a) and overline(b) is (P1)/(4) and overl...

    Text Solution

    |

  11. If the angle between vec(a) and vec(b) is (pi)/(6) and vec(c)=vec(a)+3...

    Text Solution

    |

  12. If overline(b)=overline(a)-4overline(c) and angle between overline(a) ...

    Text Solution

    |

  13. If the position vectors of the vertices of a triangle be 2hat(i)+4hat(...

    Text Solution

    |

  14. If 7hat(j)+10hat(k), -hat(i)+6hat(j)+6hat(k) and -4hat(i)+9hat(j)+6hat...

    Text Solution

    |

  15. Let alpha,beta,gamma be distinct real numbers. The points with positio...

    Text Solution

    |

  16. The perimeter of the triangle with sides 3hat(i)+4hat(j)+5hat(k), 4hat...

    Text Solution

    |

  17. The perimeter of the triangle whose vertices have the position vectors...

    Text Solution

    |

  18. Let overline(lambda)=overline(a)times(overline(b)+overline(c)), overli...

    Text Solution

    |

  19. |[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*over...

    Text Solution

    |

  20. The value of |[overline(a)*overline(a), overline(a)*overline(b), overl...

    Text Solution

    |