Home
Class 12
MATHS
The perimeter of the triangle with sides...

The perimeter of the triangle with sides `3hat(i)+4hat(j)+5hat(k), 4hat(i)-3hat(j)+5hat(k) and 7hat(i)+hat(j)` is

A

`sqrt(450)`

B

`sqrt(150)`

C

`sqrt(50)`

D

`sqrt(200)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the perimeter of the triangle with sides represented by the vectors \( \mathbf{A} = 3\hat{i} + 4\hat{j} + 5\hat{k} \), \( \mathbf{B} = 4\hat{i} - 3\hat{j} + 5\hat{k} \), and \( \mathbf{C} = 7\hat{i} + \hat{j} + 0\hat{k} \), we will follow these steps: ### Step 1: Identify the position vectors We have the following position vectors: - \( \mathbf{A} = (3, 4, 5) \) - \( \mathbf{B} = (4, -3, 5) \) - \( \mathbf{C} = (7, 1, 0) \) ### Step 2: Calculate the lengths of the sides of the triangle We will use the distance formula to find the lengths of the sides \( AB \), \( BC \), and \( CA \). #### Length of side \( AB \): Using the distance formula: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \] Substituting the coordinates of points \( A \) and \( B \): \[ AB = \sqrt{(4 - 3)^2 + (-3 - 4)^2 + (5 - 5)^2} = \sqrt{1^2 + (-7)^2 + 0^2} = \sqrt{1 + 49 + 0} = \sqrt{50} \] #### Length of side \( BC \): Using the distance formula again: \[ BC = \sqrt{(7 - 4)^2 + (1 - (-3))^2 + (0 - 5)^2} \] Calculating: \[ BC = \sqrt{(3)^2 + (4)^2 + (-5)^2} = \sqrt{9 + 16 + 25} = \sqrt{50} \] #### Length of side \( CA \): Using the distance formula: \[ CA = \sqrt{(7 - 3)^2 + (1 - 4)^2 + (0 - 5)^2} \] Calculating: \[ CA = \sqrt{(4)^2 + (-3)^2 + (-5)^2} = \sqrt{16 + 9 + 25} = \sqrt{50} \] ### Step 3: Calculate the perimeter of the triangle The perimeter \( P \) of triangle \( ABC \) is given by: \[ P = AB + BC + CA \] Substituting the lengths we found: \[ P = \sqrt{50} + \sqrt{50} + \sqrt{50} = 3\sqrt{50} \] ### Step 4: Simplify the perimeter We can simplify \( 3\sqrt{50} \): \[ 3\sqrt{50} = 3\sqrt{25 \cdot 2} = 3 \cdot 5\sqrt{2} = 15\sqrt{2} \] ### Final Answer Thus, the perimeter of the triangle is: \[ \boxed{15\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

If the position vectors of the vertices of a triangle be 2hat(i)+4hat(j)-hat(k), 4hat(i)+5hat(j)+hat(k) and 3hat(i)+6hat(j)-3hat(k) , then the triangle is

The perimeter of the triangle whose vertices have the position vectors hat(i)+hat(j)+hat(k), 5hat(i)+3hat(j)-3hat(k) and 2hat(i)+5hat(j)+9hat(k) is

Express -hat(i)-3hat(j)+4hat(k) as the linear combination of the vectors 2hat(i)+hat(j)-4hat(k) , 2hat(i)-hat(j)+3hat(k) and 3hat(i)+hat(j)-2hat(k) .

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the points, A, B and C having position vectors (2hat(i)-hat(j)+hat(k)), (hat(i)-3hat(j)-5hat(k)) and (3hat(i)-4hat(j)-4hat(k)) respectively are the vertices of a rightangled triangle. Also, find the remaining angles of the triangle.

show that the points whose position vectors are (-2hat(i) +3hat(j) +5hat(k)) (hat(i)+2hat(j)+3hat(k)) " and " (7hat(i) -hat(k)) are collinear.

Consider points A, B, C and D with position vectors 7hat(i) - 4hat(j) + 7hat(k),hat(i) - 6hat(j) + 10hat(k), - hat(i) -3hat(j) + 4hat(k) and 5hat(i) - hat(j) + 5hat(k) respectively. Then ABCD is a -

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If 7hat(j)+10hat(k), -hat(i)+6hat(j)+6hat(k) and -4hat(i)+9hat(j)+6hat...

    Text Solution

    |

  2. Let alpha,beta,gamma be distinct real numbers. The points with positio...

    Text Solution

    |

  3. The perimeter of the triangle with sides 3hat(i)+4hat(j)+5hat(k), 4hat...

    Text Solution

    |

  4. The perimeter of the triangle whose vertices have the position vectors...

    Text Solution

    |

  5. Let overline(lambda)=overline(a)times(overline(b)+overline(c)), overli...

    Text Solution

    |

  6. |[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*over...

    Text Solution

    |

  7. The value of |[overline(a)*overline(a), overline(a)*overline(b), overl...

    Text Solution

    |

  8. If overline(a), overline(b), overline(c) be three vecotrs such that ov...

    Text Solution

    |

  9. If |overline(a)|=50 and overline(b)=6hat(i)-8hat(j)-(15)/(2)hat(k) are...

    Text Solution

    |

  10. If overline(a) and overline(b) are the position vectors of the points ...

    Text Solution

    |

  11. If the vectors 3hat(i)-5hat(j)+hat(k)and9hat(i)-15hat(j)+phat(k) are c...

    Text Solution

    |

  12. If the vectors 2hat(i)-qhat(j)+3hat(k)and4hat(i)-5hat(j)+6hat(k) are c...

    Text Solution

    |

  13. The value of k for which the vectors overline(a)=hat(i)-hat(j) and ove...

    Text Solution

    |

  14. Let overline(a) and overline(b) be non-collinear. If overline(c)=(x-2)...

    Text Solution

    |

  15. If the points A(3, 2, -4), B(9, 8, -10) and C(-2, -3. p) are collinear...

    Text Solution

    |

  16. If the points A(4, 5, 2), B(3, 2, p) and C(5, 8, 0) are collinear , th...

    Text Solution

    |

  17. If the points A(2,1,1,),B(0,-1,4)andC(k,3,-2) are collinear, then k= ....

    Text Solution

    |

  18. If the points A(5, -6, -2), B(p, 2, 4) and C(3, -2, 1) are collinear, ...

    Text Solution

    |

  19. If the points A(1, -2, 3), B(2, 3, -4) and C(0, -p, 10) are collinear,...

    Text Solution

    |

  20. If the points A(1, -2, 2), B(3, 1, 1) and C(-1, p, 3) are collinear, t...

    Text Solution

    |