Home
Class 12
MATHS
The perimeter of the triangle whose vert...

The perimeter of the triangle whose vertices have the position vectors `hat(i)+hat(j)+hat(k), 5hat(i)+3hat(j)-3hat(k) and 2hat(i)+5hat(j)+9hat(k)` is

A

`15+sqrt(157)`

B

`16+sqrt(157)`

C

`15-sqrt(157)`

D

`sqrt(15)-sqrt(157)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the perimeter of the triangle whose vertices have the position vectors \(\hat{i} + \hat{j} + \hat{k}\), \(5\hat{i} + 3\hat{j} - 3\hat{k}\), and \(2\hat{i} + 5\hat{j} + 9\hat{k}\), we will follow these steps: ### Step 1: Define the position vectors Let: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = 5\hat{i} + 3\hat{j} - 3\hat{k} \) - \( \mathbf{C} = 2\hat{i} + 5\hat{j} + 9\hat{k} \) ### Step 2: Calculate the vectors representing the sides of the triangle 1. **Vector \( \mathbf{AB} \)**: \[ \mathbf{AB} = \mathbf{B} - \mathbf{A} = (5\hat{i} + 3\hat{j} - 3\hat{k}) - (\hat{i} + \hat{j} + \hat{k}) \] \[ = (5 - 1)\hat{i} + (3 - 1)\hat{j} + (-3 - 1)\hat{k} = 4\hat{i} + 2\hat{j} - 4\hat{k} \] 2. **Vector \( \mathbf{BC} \)**: \[ \mathbf{BC} = \mathbf{C} - \mathbf{B} = (2\hat{i} + 5\hat{j} + 9\hat{k}) - (5\hat{i} + 3\hat{j} - 3\hat{k}) \] \[ = (2 - 5)\hat{i} + (5 - 3)\hat{j} + (9 + 3)\hat{k} = -3\hat{i} + 2\hat{j} + 12\hat{k} \] 3. **Vector \( \mathbf{CA} \)**: \[ \mathbf{CA} = \mathbf{A} - \mathbf{C} = (\hat{i} + \hat{j} + \hat{k}) - (2\hat{i} + 5\hat{j} + 9\hat{k}) \] \[ = (1 - 2)\hat{i} + (1 - 5)\hat{j} + (1 - 9)\hat{k} = -\hat{i} - 4\hat{j} - 8\hat{k} \] ### Step 3: Calculate the magnitudes of the vectors 1. **Magnitude of \( \mathbf{AB} \)**: \[ |\mathbf{AB}| = \sqrt{(4)^2 + (2)^2 + (-4)^2} = \sqrt{16 + 4 + 16} = \sqrt{36} = 6 \] 2. **Magnitude of \( \mathbf{BC} \)**: \[ |\mathbf{BC}| = \sqrt{(-3)^2 + (2)^2 + (12)^2} = \sqrt{9 + 4 + 144} = \sqrt{157} \] 3. **Magnitude of \( \mathbf{CA} \)**: \[ |\mathbf{CA}| = \sqrt{(-1)^2 + (-4)^2 + (-8)^2} = \sqrt{1 + 16 + 64} = \sqrt{81} = 9 \] ### Step 4: Calculate the perimeter of the triangle The perimeter \( P \) is given by the sum of the lengths of the sides: \[ P = |\mathbf{AB}| + |\mathbf{BC}| + |\mathbf{CA}| = 6 + \sqrt{157} + 9 \] \[ P = 15 + \sqrt{157} \] ### Final Answer The perimeter of the triangle is \( 15 + \sqrt{157} \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Find the volume of the parallelopiped whose coterminus edges are given by vectors 2hat(i)+3hat(j)-4hat(k),5hat(i)+7hat(j)+5hat(k)and4hat(i)+5hat(j)-2hat(k) .

The perimeter of the triangle with sides 3hat(i)+4hat(j)+5hat(k), 4hat(i)-3hat(j)+5hat(k) and 7hat(i)+hat(j) is

The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

show that the points whose position vectors are (-2hat(i) +3hat(j) +5hat(k)) (hat(i)+2hat(j)+3hat(k)) " and " (7hat(i) -hat(k)) are collinear.

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Find 'lambda' if the vectors : hat(i)-hat(j)+hat(k), 3hat(i)+hat(j)+2hat(k) and hat(i)+lambda hat(j)-3hat(k) are coplanar.

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. Let alpha,beta,gamma be distinct real numbers. The points with positio...

    Text Solution

    |

  2. The perimeter of the triangle with sides 3hat(i)+4hat(j)+5hat(k), 4hat...

    Text Solution

    |

  3. The perimeter of the triangle whose vertices have the position vectors...

    Text Solution

    |

  4. Let overline(lambda)=overline(a)times(overline(b)+overline(c)), overli...

    Text Solution

    |

  5. |[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*over...

    Text Solution

    |

  6. The value of |[overline(a)*overline(a), overline(a)*overline(b), overl...

    Text Solution

    |

  7. If overline(a), overline(b), overline(c) be three vecotrs such that ov...

    Text Solution

    |

  8. If |overline(a)|=50 and overline(b)=6hat(i)-8hat(j)-(15)/(2)hat(k) are...

    Text Solution

    |

  9. If overline(a) and overline(b) are the position vectors of the points ...

    Text Solution

    |

  10. If the vectors 3hat(i)-5hat(j)+hat(k)and9hat(i)-15hat(j)+phat(k) are c...

    Text Solution

    |

  11. If the vectors 2hat(i)-qhat(j)+3hat(k)and4hat(i)-5hat(j)+6hat(k) are c...

    Text Solution

    |

  12. The value of k for which the vectors overline(a)=hat(i)-hat(j) and ove...

    Text Solution

    |

  13. Let overline(a) and overline(b) be non-collinear. If overline(c)=(x-2)...

    Text Solution

    |

  14. If the points A(3, 2, -4), B(9, 8, -10) and C(-2, -3. p) are collinear...

    Text Solution

    |

  15. If the points A(4, 5, 2), B(3, 2, p) and C(5, 8, 0) are collinear , th...

    Text Solution

    |

  16. If the points A(2,1,1,),B(0,-1,4)andC(k,3,-2) are collinear, then k= ....

    Text Solution

    |

  17. If the points A(5, -6, -2), B(p, 2, 4) and C(3, -2, 1) are collinear, ...

    Text Solution

    |

  18. If the points A(1, -2, 3), B(2, 3, -4) and C(0, -p, 10) are collinear,...

    Text Solution

    |

  19. If the points A(1, -2, 2), B(3, 1, 1) and C(-1, p, 3) are collinear, t...

    Text Solution

    |

  20. If P(5,6,-1),Q (2,-7,beta ) and R (-1,-20,7) are collinear , then bet...

    Text Solution

    |