Home
Class 12
MATHS
|[overline(a)*overline(a), overline(a)*o...

`|[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*overline(b), overline(b)*overline(b)]|=`

A

`0`

B

`a^(2)b^(2)`

C

`|overline(a)timesoverline(b)|^(2)`

D

`(overline(a)*overline(b))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant \[ D = \begin{vmatrix} \overline{a} \cdot \overline{a} & \overline{a} \cdot \overline{b} \\ \overline{a} \cdot \overline{b} & \overline{b} \cdot \overline{b} \end{vmatrix} \] we can follow these steps: ### Step 1: Identify the dot products The elements of the determinant can be expressed in terms of the magnitudes of vectors \(\overline{a}\) and \(\overline{b}\) and the angle \(\theta\) between them. - \(\overline{a} \cdot \overline{a} = |\overline{a}|^2 = A^2\) - \(\overline{b} \cdot \overline{b} = |\overline{b}|^2 = B^2\) - \(\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos \theta = AB \cos \theta\) ### Step 2: Substitute into the determinant Substituting these values into the determinant gives us: \[ D = \begin{vmatrix} A^2 & AB \cos \theta \\ AB \cos \theta & B^2 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the formula for the determinant of a 2x2 matrix, we have: \[ D = A^2 \cdot B^2 - (AB \cos \theta)^2 \] ### Step 4: Simplify the expression Now, simplifying the expression: \[ D = A^2 B^2 - A^2 B^2 \cos^2 \theta \] Factoring out \(A^2 B^2\): \[ D = A^2 B^2 (1 - \cos^2 \theta) \] ### Step 5: Use the trigonometric identity Using the identity \(1 - \cos^2 \theta = \sin^2 \theta\): \[ D = A^2 B^2 \sin^2 \theta \] ### Step 6: Express in terms of the cross product The magnitude of the cross product of two vectors \(\overline{a}\) and \(\overline{b}\) is given by: \[ |\overline{a} \times \overline{b}| = AB \sin \theta \] Thus, we can rewrite \(D\) as: \[ D = (AB \sin \theta)^2 \] ### Final Answer Therefore, the final answer is: \[ D = |\overline{a} \times \overline{b}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

For non-zero vectors overline(a), overline(b), overline(c), (overline(a)timesoverline(b))*overline(c)=|overline(a)||overline(b)||overline(c)| holds, iff

If [[3overline(a)+5overline(b), overline(c), overline(d)]]=p[[overline(a), overline(c), overline(d)]]+q[[overline(b), overline(c), overline(d)]] , then p+q=

If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , where overline(a), overline(b), overline(c) are three non-coplanar vectors, then (overline(a)-overline(b)-overline(c))*overline(p)-(overline(b)-overline(c)-overline(a))*overline(q)-(overline(c)-overline(a)-overline(b))*overline(r)=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. The perimeter of the triangle whose vertices have the position vectors...

    Text Solution

    |

  2. Let overline(lambda)=overline(a)times(overline(b)+overline(c)), overli...

    Text Solution

    |

  3. |[overline(a)*overline(a), overline(a)*overline(b)], [overline(a)*over...

    Text Solution

    |

  4. The value of |[overline(a)*overline(a), overline(a)*overline(b), overl...

    Text Solution

    |

  5. If overline(a), overline(b), overline(c) be three vecotrs such that ov...

    Text Solution

    |

  6. If |overline(a)|=50 and overline(b)=6hat(i)-8hat(j)-(15)/(2)hat(k) are...

    Text Solution

    |

  7. If overline(a) and overline(b) are the position vectors of the points ...

    Text Solution

    |

  8. If the vectors 3hat(i)-5hat(j)+hat(k)and9hat(i)-15hat(j)+phat(k) are c...

    Text Solution

    |

  9. If the vectors 2hat(i)-qhat(j)+3hat(k)and4hat(i)-5hat(j)+6hat(k) are c...

    Text Solution

    |

  10. The value of k for which the vectors overline(a)=hat(i)-hat(j) and ove...

    Text Solution

    |

  11. Let overline(a) and overline(b) be non-collinear. If overline(c)=(x-2)...

    Text Solution

    |

  12. If the points A(3, 2, -4), B(9, 8, -10) and C(-2, -3. p) are collinear...

    Text Solution

    |

  13. If the points A(4, 5, 2), B(3, 2, p) and C(5, 8, 0) are collinear , th...

    Text Solution

    |

  14. If the points A(2,1,1,),B(0,-1,4)andC(k,3,-2) are collinear, then k= ....

    Text Solution

    |

  15. If the points A(5, -6, -2), B(p, 2, 4) and C(3, -2, 1) are collinear, ...

    Text Solution

    |

  16. If the points A(1, -2, 3), B(2, 3, -4) and C(0, -p, 10) are collinear,...

    Text Solution

    |

  17. If the points A(1, -2, 2), B(3, 1, 1) and C(-1, p, 3) are collinear, t...

    Text Solution

    |

  18. If P(5,6,-1),Q (2,-7,beta ) and R (-1,-20,7) are collinear , then bet...

    Text Solution

    |

  19. If the points A(3,0,p),B(-1,q,3) and C(-3,3,0) are collinear, then fin...

    Text Solution

    |

  20. If the points with position vectors 60 hat i+2 hat j , 40 hat i-8 hat ...

    Text Solution

    |