Home
Class 12
MATHS
If G1 and G2 are the centroid of triangl...

If `G_1 and G_2` are the centroid of `triangleABC and trianglePQR` respectively, then `overline(AP)+overline(BQ)+overline(CR)=`

A

`overline(G_1G_2)`

B

`2overline(G_1G_2)`

C

`3overline(G_1G_2)`

D

`6overline(G_1G_2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \overline{AP} + \overline{BQ} + \overline{CR} \) given that \( G_1 \) and \( G_2 \) are the centroids of triangles \( ABC \) and \( PQR \) respectively. ### Step-by-Step Solution: 1. **Identify the Centroid Formulas**: The position vector of the centroid \( G_1 \) of triangle \( ABC \) is given by: \[ \overline{G_1} = \frac{\overline{A} + \overline{B} + \overline{C}}{3} \] Similarly, the position vector of the centroid \( G_2 \) of triangle \( PQR \) is: \[ \overline{G_2} = \frac{\overline{P} + \overline{Q} + \overline{R}}{3} \] 2. **Express Vectors \( \overline{AP}, \overline{BQ}, \overline{CR} \)**: The vectors can be expressed as: \[ \overline{AP} = \overline{P} - \overline{A} \] \[ \overline{BQ} = \overline{Q} - \overline{B} \] \[ \overline{CR} = \overline{R} - \overline{C} \] 3. **Combine the Vectors**: Now, we can combine these vectors: \[ \overline{AP} + \overline{BQ} + \overline{CR} = (\overline{P} - \overline{A}) + (\overline{Q} - \overline{B}) + (\overline{R} - \overline{C}) \] Simplifying this gives: \[ \overline{AP} + \overline{BQ} + \overline{CR} = (\overline{P} + \overline{Q} + \overline{R}) - (\overline{A} + \overline{B} + \overline{C}) \] 4. **Substitute Centroid Values**: Using the centroid formulas, we can substitute: \[ \overline{P} + \overline{Q} + \overline{R} = 3\overline{G_2} \] \[ \overline{A} + \overline{B} + \overline{C} = 3\overline{G_1} \] Therefore, we have: \[ \overline{AP} + \overline{BQ} + \overline{CR} = 3\overline{G_2} - 3\overline{G_1} \] 5. **Factor Out the Common Term**: We can factor out the 3: \[ \overline{AP} + \overline{BQ} + \overline{CR} = 3(\overline{G_2} - \overline{G_1}) \] 6. **Final Result**: Thus, the final result is: \[ \overline{AP} + \overline{BQ} + \overline{CR} = 3 \overline{G_2 G_1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

Let G be the centroid of a triangle PQR and S be any other point, the overline(SP)+overline(SQ)+overline(SR)=

overline(AB)-overline(CB)+overline(DA)+2overline(CD)=

P, Q, R are the mid-points of the sides BC, AC, and AB respectively of triangleABC . If G_1(overline(g_1)) and G_2(overline(g_2)) are the centroids of the triangleABC and trianglePQR respectively, then

If G is the centroid of triangle ABC and L is a point on BC, such that BL=2LC , then overline(GB)+2overline(GC)=

If G is the point of concurrence of the median of triangleABC , then overline(GA)+overline(GB)+overline(GC)=

If P is the orthocentre and Q is the circumcentre of triangleABC , then overline(PA)+overline(PB)+overline(PC)=

In parallelogram ABCD,if P, Q are mid-points of BC and CD respectively, then overline(AP)+overline(AQ)=

Write 2.overline27

In an isosceles triangleABC , If AB=AC and AD is the median, then overline(AD)*overline(BC)=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If A, B, C, D are four non-collinear points in the plane such that ove...

    Text Solution

    |

  2. Which of the following is trues?

    Text Solution

    |

  3. If G1 and G2 are the centroid of triangleABC and trianglePQR respectiv...

    Text Solution

    |

  4. P, Q, R are the mid-points of the sides BC, AC, and AB respectively of...

    Text Solution

    |

  5. If G is the point of concurrence of the median of triangleABC, then ov...

    Text Solution

    |

  6. Let G be the centroid of a triangle PQR and S be any other point, the ...

    Text Solution

    |

  7. If G is the centroid of triangle ABC and L is a point on BC, such that...

    Text Solution

    |

  8. If G is the point of concurrence of the median of triangleABC, then ov...

    Text Solution

    |

  9. D, E and F are the mid-points of the sides BC, CA and AB respectively ...

    Text Solution

    |

  10. If P is the orthocentre and Q is the circumcentre of triangle(ABC), th...

    Text Solution

    |

  11. If P is the orthocentre and Q is the circumcentre of triangleABC, then...

    Text Solution

    |

  12. IF G (barg),H (barh)and p(barp) are centroid orthocenter and ci...

    Text Solution

    |

  13. If O is the circumcentre, G is the centroid and O' is orthocentre or t...

    Text Solution

    |

  14. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  15. In an isosceles triangleABC, If AB=AC and AD is the median, then overl...

    Text Solution

    |

  16. In a triangle O A B ,\ /A O B=90^0dot If P\ a n d\ Q are points of tri...

    Text Solution

    |

  17. In parallelogram ABCD, if P is the mid-point of side AB, then

    Text Solution

    |

  18. In parallelogram ABCD, if overline(AB)=overline(a) and overline(AD)=ov...

    Text Solution

    |

  19. If the two adjacent sides of a parallelogram are given by hat(i)+2hat(...

    Text Solution

    |

  20. Let overset(to)(OA) = overset(to)(a), overset(to)(OB)= 10overset(to)(a...

    Text Solution

    |