Home
Class 12
MATHS
If ABCDEF is a regular hexagon inscribed...

If ABCDEF is a regular hexagon inscribed in a circle with centre O, then `overline(AB)+overline(AC)+overline(AD)+overline(AE)+overline(AF)=`

A

`overline(AO)`

B

`5overline(AO)`

C

`6overline(AO)`

D

`8overline(AO)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the vectors \( \overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} \) for a regular hexagon \( ABCDEF \) inscribed in a circle with center \( O \). ### Step-by-Step Solution: 1. **Understanding the Geometry**: - A regular hexagon has equal sides and equal angles. The vertices \( A, B, C, D, E, F \) are equally spaced around the circle. 2. **Vector Representation**: - We can represent the vectors in terms of the position vectors from the center \( O \) to each vertex: - Let \( \vec{A}, \vec{B}, \vec{C}, \vec{D}, \vec{E}, \vec{F} \) be the position vectors of points \( A, B, C, D, E, F \) respectively. 3. **Expressing the Required Sum**: - We need to compute: \[ \vec{AB} + \vec{AC} + \vec{AD} + \vec{AE} + \vec{AF} \] - Using the position vectors, we can express these as: \[ \vec{AB} = \vec{B} - \vec{A}, \quad \vec{AC} = \vec{C} - \vec{A}, \quad \vec{AD} = \vec{D} - \vec{A}, \quad \vec{AE} = \vec{E} - \vec{A}, \quad \vec{AF} = \vec{F} - \vec{A} \] 4. **Substituting the Vectors**: - Substitute the expressions into the sum: \[ (\vec{B} - \vec{A}) + (\vec{C} - \vec{A}) + (\vec{D} - \vec{A}) + (\vec{E} - \vec{A}) + (\vec{F} - \vec{A}) \] - This simplifies to: \[ (\vec{B} + \vec{C} + \vec{D} + \vec{E} + \vec{F}) - 5\vec{A} \] 5. **Finding the Sum of the Position Vectors**: - In a regular hexagon, the sum of the position vectors of the vertices is equal to \( 6\vec{O} \) (since the center \( O \) is the average of the vertices): \[ \vec{B} + \vec{C} + \vec{D} + \vec{E} + \vec{F} = 5\vec{O} \] 6. **Substituting Back**: - Substitute this result back into the sum: \[ 5\vec{O} - 5\vec{A} = 5(\vec{O} - \vec{A}) \] 7. **Final Expression**: - The expression \( \vec{O} - \vec{A} \) is a vector pointing from \( A \) to the center \( O \). Thus, we can express the final result as: \[ 5(\vec{O} - \vec{A}) \] ### Conclusion: The final result for the sum \( \overline{AB} + \overline{AC} + \overline{AD} + \overline{AE} + \overline{AF} \) is \( 5(\vec{O} - \vec{A}) \).
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

overline(AB)-overline(CB)+overline(DA)+2overline(CD)=

overline(OA)+6overline(BC)+overline(AB)+5overline(OB)=

overline(PQ)-overline(TQ)+overline(PS)+overline(ST)=

If ABCDE is a pentago, then overline(AB)+overline(BC)+overline(CD)+overline(DE)-overline(AE)=

[[overline(a), overline(b), overline(a)timesoverline(b)]]=

If ABCDEF is a regular hexagon, then overline(AB)+overline(AC)+overline(AE)+overline(AF)=

[[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overline(a)]]=

[[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overline(a)]]=

[[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overline(a)]]=

In triangle ABC, if 2overline(AC)=3overline(CB) , then 2overline(OA)+3overline(OB)=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If ABCDE is a pentago, then overline(AB)+overline(BC)+overline(CD)+ove...

    Text Solution

    |

  2. overline(a), overline(b) are vectors, overline(AB), overline(BC) deter...

    Text Solution

    |

  3. If ABCDEF is a regular hexagon inscribed in a circle with centre O, th...

    Text Solution

    |

  4. If ABCDEF is a regular hexagon, then overline(AB)+overline(AC)+overlin...

    Text Solution

    |

  5. In a regular hexagon ABCDEF, vec(AE)

    Text Solution

    |

  6. If overline(a) and overline(b) represent the sides overline(AB) and ov...

    Text Solution

    |

  7. If vec a ,\ vec b are the vectors forming consecutive sides of a reg...

    Text Solution

    |

  8. If A(3, -2, 2) and B(2, 9, 5) are end points of a diameter of a circle...

    Text Solution

    |

  9. If AB and CD are two chord of a circle intersecting at right angles in...

    Text Solution

    |

  10. hat(i)*(hat(j)timeshat(k))+hat(j)*(hat(k)timeshat(i))+hat(k)*(hat(i)ti...

    Text Solution

    |

  11. If hat(i), hat(j), hat(k) are the unit vectors and mutually perpendicu...

    Text Solution

    |

  12. If hat(i), hat(j), hat(k) are the unit vectors and mutually perpendicu...

    Text Solution

    |

  13. If hat(i), hat(j), hat(k) are the unit vectors and mutually perpendicu...

    Text Solution

    |

  14. If overline(a), overline(b), overline(c) are three non-zero, non-copla...

    Text Solution

    |

  15. If overline(a)*overline(b)=overline(b)*overline(c)=overline(c)*overlin...

    Text Solution

    |

  16. For non-zero vectors overline(a), overline(b), overline(c), (overline(...

    Text Solution

    |

  17. For non-zero vectors overline(a), overline(b), overline(c), (overline(...

    Text Solution

    |

  18. If overline(x)*overline(a)=0, overline(x)*overline(b)=0, overline(x)*o...

    Text Solution

    |

  19. If vectors overline(a)=2hat(i)+3hat(j)+4hat(k), overline(b)=hat(i)+hat...

    Text Solution

    |

  20. If overline(a)=3hat(i)-2hat(j)+7hat(k), overline(b)=5hat(i)+hat(j)-2ha...

    Text Solution

    |