Home
Class 12
MATHS
If overline(a)=3hat(i)-hat(j)+4hat(k), o...

If `overline(a)=3hat(i)-hat(j)+4hat(k), overline(b)=2hat(i)+3hat(j)-2hat(k), overline(c)=-5hat(i)+2hat(j)+3hat(k)`, then `overline(a)*(overline(b)timesoverline(c))=`

A

`100`

B

`101`

C

`111`

D

`109`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the dot product of vector **a** with the cross product of vectors **b** and **c**. This can be represented mathematically as: \[ \overline{a} \cdot (\overline{b} \times \overline{c}) \] Given: \[ \overline{a} = 3\hat{i} - \hat{j} + 4\hat{k} \] \[ \overline{b} = 2\hat{i} + 3\hat{j} - 2\hat{k} \] \[ \overline{c} = -5\hat{i} + 2\hat{j} + 3\hat{k} \] ### Step 1: Calculate the cross product \(\overline{b} \times \overline{c}\) To find \(\overline{b} \times \overline{c}\), we can use the determinant of a matrix formed by the unit vectors and the components of vectors **b** and **c**: \[ \overline{b} \times \overline{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -2 \\ -5 & 2 & 3 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 3 & -2 \\ 2 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -2 \\ -5 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ -5 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 3 & -2 \\ 2 & 3 \end{vmatrix} = (3 \cdot 3) - (-2 \cdot 2) = 9 + 4 = 13 \] 2. For \(-\hat{j}\): \[ \begin{vmatrix} 2 & -2 \\ -5 & 3 \end{vmatrix} = (2 \cdot 3) - (-2 \cdot -5) = 6 - 10 = -4 \] Thus, \(-(-4) = 4\). 3. For \(\hat{k}\): \[ \begin{vmatrix} 2 & 3 \\ -5 & 2 \end{vmatrix} = (2 \cdot 2) - (3 \cdot -5) = 4 + 15 = 19 \] Putting it all together, we have: \[ \overline{b} \times \overline{c} = 13\hat{i} + 4\hat{j} + 19\hat{k} \] ### Step 2: Calculate the dot product \(\overline{a} \cdot (\overline{b} \times \overline{c})\) Now we calculate: \[ \overline{a} \cdot (13\hat{i} + 4\hat{j} + 19\hat{k}) \] \[ = (3\hat{i} - \hat{j} + 4\hat{k}) \cdot (13\hat{i} + 4\hat{j} + 19\hat{k}) \] \[ = 3 \cdot 13 + (-1) \cdot 4 + 4 \cdot 19 \] \[ = 39 - 4 + 76 \] \[ = 39 + 76 - 4 = 111 \] ### Final Answer: \[ \overline{a} \cdot (\overline{b} \times \overline{c}) = 111 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

If overline(a)=hat(i)+hat(j)+hat(k), overline(b)=2hat(i)+lambdahat(j)+hat(k), overline(c)=hat(i)-hat(j)+4hat(k) and overline(a)*(overline(b)timesoverline(c))=10 , then lambda is equal to

If overline(a)=hat(i)+hat(j)+hat(k), overline(b)=2hat(i)+qhat(j)+hat(k), overline(c)=hat(i)-hat(j)+4hat(k) and overline(a)*(overline(b)timesoverline(c))=1 , then q=

Knowledge Check

  • If overline(a)=3hat(i)-2hat(j)+7hat(k), overline(b)=5hat(i)+hat(j)-2hat(k), overline(c)=hat(i)+hat(j)-hat(k) , then overline(a)*(overline(b)timesoverline(c))=

    A
    `-25`
    B
    `37`
    C
    `25`
    D
    `31`
  • If overline(a)=2hat(i)+3hat(j)-hat(k), overline(b)=4hat(i)+2hat(j)+3hat(k), overline(c)=2hat(i)-5hat(j)+9hat(k) , then overline(a)*(overline(b)timesoverline(c))=

    A
    `66`
    B
    `0`
    C
    `24`
    D
    `-90`
  • If overline(a)=7hat(i)-hat(j)+2hat(k), overline(b)=hat(i)+3hat(j)-hat(k), overline(c)=4hat(i)+5hat(k) , then overline(a)*(overline(b)timesoverline(c))=

    A
    `120`
    B
    `72`
    C
    `138`
    D
    `90`
  • Similar Questions

    Explore conceptually related problems

    If overline(a)=2hat(i)+3hat(j)-hat(k), overline(b)=5hat(i)-6hat(j)+2hat(k) and overline(c)=hat(i)+hat(j)+hat(k) , then [[overline(a), overline(b), overline(c)]]=

    If overline(a)=hat(i)-2hat(j)+3hat(k), overline(b)=2hat(i)+3hat(j)-4hat(k), overline(c)=4hat(i)+13hat(j)-18hat(k) and overline(c)=overline(a)x+yoverline(b) , then

    If overline(a)=hat(i)-2hat(j)+hat(k), overline(b)=xhat(i)-5hat(j)+3hat(k), overline(c)=5hat(i)-9hat(j)+4hat(k) and [[overline(a), overline(b), overline(c)]]=0 , then x=

    If overline(a)=-hat(i)-hat(j)+2hat(k), overline(b)=3hat(i)+hat(j)-hat(k), overline(c)=9hat(i)+hat(j)+2hat(k) and overline(c)=xoverline(a)+yoverline(b) , then

    Given vectors overline(a)=3hat(i)-6hat(j)-hat(k), overline(b)=hat(i)+4hat(j)-3hat(k), overline(c)=3hat(i)-4hat(j)-12hat(k) , then the projection of overline(a)timesoverline(b) on vector overline(c) is