Home
Class 12
MATHS
The volume of the tetrahedron whose vert...

The volume of the tetrahedron whose vertices are `A(-1, 2, 3), B(3, -2, 1), C(2, 1, 3) and C(-1, -2, 4)`

A

`(2)/(3)` cu. Units

B

`(32)/(3)`cu. Units

C

`(8)/(3)`cu. Units

D

`(16)/((3)`cu. Units

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron with vertices \( A(-1, 2, 3) \), \( B(3, -2, 1) \), \( C(2, 1, 3) \), and \( D(-1, -2, 4) \), we can use the formula for the volume of a tetrahedron given by: \[ V = \frac{1}{6} | \vec{AB} \cdot (\vec{AC} \times \vec{AD}) | \] where \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) are vectors from vertex \( A \) to vertices \( B \), \( C \), and \( D \) respectively. ### Step 1: Find the vectors \( \vec{AB} \), \( \vec{AC} \), and \( \vec{AD} \) 1. **Calculate \( \vec{AB} \)**: \[ \vec{AB} = B - A = (3 - (-1), -2 - 2, 1 - 3) = (3 + 1, -2 - 2, 1 - 3) = (4, -4, -2) \] 2. **Calculate \( \vec{AC} \)**: \[ \vec{AC} = C - A = (2 - (-1), 1 - 2, 3 - 3) = (2 + 1, 1 - 2, 3 - 3) = (3, -1, 0) \] 3. **Calculate \( \vec{AD} \)**: \[ \vec{AD} = D - A = (-1 - (-1), -2 - 2, 4 - 3) = (0, -2 - 2, 4 - 3) = (0, -4, 1) \] ### Step 2: Calculate the cross product \( \vec{AC} \times \vec{AD} \) The cross product of two vectors \( \vec{u} = (u_1, u_2, u_3) \) and \( \vec{v} = (v_1, v_2, v_3) \) is given by the determinant: \[ \vec{u} \times \vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} \] For \( \vec{AC} = (3, -1, 0) \) and \( \vec{AD} = (0, -4, 1) \): \[ \vec{AC} \times \vec{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -1 & 0 \\ 0 & -4 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} -1 & 0 \\ -4 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 3 & 0 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 3 & -1 \\ 0 & -4 \end{vmatrix} \] Calculating each of these determinants: 1. \( \begin{vmatrix} -1 & 0 \\ -4 & 1 \end{vmatrix} = (-1)(1) - (0)(-4) = -1 \) 2. \( \begin{vmatrix} 3 & 0 \\ 0 & 1 \end{vmatrix} = (3)(1) - (0)(0) = 3 \) 3. \( \begin{vmatrix} 3 & -1 \\ 0 & -4 \end{vmatrix} = (3)(-4) - (-1)(0) = -12 \) So we have: \[ \vec{AC} \times \vec{AD} = (-1)\hat{i} - 3\hat{j} - 12\hat{k} = (-1, -3, -12) \] ### Step 3: Calculate the dot product \( \vec{AB} \cdot (\vec{AC} \times \vec{AD}) \) Now, we calculate the dot product: \[ \vec{AB} \cdot (\vec{AC} \times \vec{AD}) = (4, -4, -2) \cdot (-1, -3, -12) \] Calculating this: \[ = 4 \cdot (-1) + (-4) \cdot (-3) + (-2) \cdot (-12) \] \[ = -4 + 12 + 24 = 32 \] ### Step 4: Calculate the volume of the tetrahedron Finally, substituting into the volume formula: \[ V = \frac{1}{6} |32| = \frac{32}{6} = \frac{16}{3} \] Thus, the volume of the tetrahedron is: \[ \boxed{\frac{16}{3}} \text{ cubic units} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

The volume of the tetrahedron whose vertices are (3, 7, 4), (5, -2, 3), (-4, 5, 6) and (1, 2, 3) are

Find the value of a tetrahedrn whose vertices are A(-1,2,3),B(3,-2,1),C(2,1,3) and D(-1,-2,4).

The volume of the tetrahedron whose vertices are A(1,-1,10),B(-1,-3,7),C(5,-1,1) and D(7,-4,7) is

Find the volume of the tetrahedron whose vertices are A(3,7,4),B(5,-2,3)C(-4,5,6) and D(1,2,3).

Find the area of the triangle whose vertices are A(1, 2, 3), B(2, –1, 1)and C(1, 2, –4).

" The volume of the tetrahedron whose vertices are "(2,1,1),(1,-1,2),(0,1,-1)" and "(1,-2,-1)" is "........." (in cu.units) "

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. The volume of the tetrahedron whose co-terminous edges are overline(a)...

    Text Solution

    |

  2. Volume of tetrahedron with vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0)...

    Text Solution

    |

  3. The volume of the tetrahedron whose vertices are A(-1, 2, 3), B(3, -2,...

    Text Solution

    |

  4. The volume of the tetrahedron whose vertices are (3, 7, 4), (5, -2, 3)...

    Text Solution

    |

  5. If overline(a)*hat(i)=4, then (overline(a)timeshat(j))*(2hat(j)-3hat(k...

    Text Solution

    |

  6. If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3...

    Text Solution

    |

  7. [[hat(i), hat(j), hat(k)]]+[[hat(k), hat(j), hat(i)]]+[[hat(j), hatk, ...

    Text Solution

    |

  8. If overline(u)=hat(i)-2hat(j)+hat(k), overline(v)=3hat(i)+hat(k), over...

    Text Solution

    |

  9. If overline(u)=hat(i)-2hat(j)+hat(k), overline(v)=3hat(i)+hat(k), over...

    Text Solution

    |

  10. If overline(a)=hat(i)+5hat(k), overline(b)=2hat(i)+3hat(k), overline(c...

    Text Solution

    |

  11. If overline(u)=-hat(i)-2hat(j)+hat(k), overline(r)=3hat(i)+hat(k), ove...

    Text Solution

    |

  12. If overline(c)=3overline(a)-2overline(b), then [[overline(a), overline...

    Text Solution

    |

  13. [[overline(a), overline(b), overline(a)timesoverline(b)]]=

    Text Solution

    |

  14. Which of the following is trues?

    Text Solution

    |

  15. [[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overli...

    Text Solution

    |

  16. If overline(a), overline(b) and overline(c) are unit coplanar vectors,...

    Text Solution

    |

  17. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  18. [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overli...

    Text Solution

    |

  19. [[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overli...

    Text Solution

    |

  20. overline(a)*((overline(a)+overline(b)+overline(c))times(overline(b)+ov...

    Text Solution

    |