Home
Class 12
MATHS
[[hat(i), hat(j), hat(k)]]+[[hat(k), hat...

`[[hat(i), hat(j), hat(k)]]+[[hat(k), hat(j), hat(i)]]+[[hat(j), hatk, hat(i)]]=`

A

`1`

B

`3`

C

`-3`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \text{Triple product of } \hat{i}, \hat{j}, \hat{k} + \text{Triple product of } \hat{k}, \hat{j}, \hat{i} + \text{Triple product of } \hat{j}, \hat{k}, \hat{i} \] ### Step 1: Understand the Triple Product The triple product of three vectors \(\hat{a}, \hat{b}, \hat{c}\) can be expressed as: \[ \hat{a} \cdot (\hat{b} \times \hat{c}) \] ### Step 2: Calculate Each Triple Product 1. **First Triple Product**: \[ \hat{i} \cdot (\hat{j} \times \hat{k}) \] Using the right-hand rule, \(\hat{j} \times \hat{k} = \hat{i}\). Therefore: \[ \hat{i} \cdot \hat{i} = 1 \] 2. **Second Triple Product**: \[ \hat{k} \cdot (\hat{j} \times \hat{i}) \] Again using the right-hand rule, \(\hat{j} \times \hat{i} = -\hat{k}\). Thus: \[ \hat{k} \cdot (-\hat{k}) = -1 \] 3. **Third Triple Product**: \[ \hat{j} \cdot (\hat{k} \times \hat{i}) \] Using the right-hand rule, \(\hat{k} \times \hat{i} = \hat{j}\). Therefore: \[ \hat{j} \cdot \hat{j} = 1 \] ### Step 3: Combine the Results Now, we can add the results of the three triple products: \[ 1 + (-1) + 1 = 1 \] ### Final Answer Thus, the final result of the expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

Find the value of : (i) (hat(i) xxhat(j))*hat (k) + hat(i)* hat(j) (ii) (hat(k) xx hat(j))* hat(i) +hat(j)* hat(k) hat(i) xx (hat(j) + hat(k) )+hat(j) xx(hat(k) +hat(i))+ hat(k) xx (hat(i)+hat(j))

Prove that (i) [hat(i)hat(j)hat(k)]=[hat(j)hat(k)hat(i)]=[hat(k)hat(j)hat(i)]=1 (ii) [hat(i)hat(k)hat(j)]=[hat(k)hat(j)hat(i)]=[hat(j)hat(i)hat(k)]=1

(hat(k)xx hat(j)).hat(i)+hat(j).hat(k)= ………….

What is the value of lamda for which the vectors hat(i) - hat(j) + hat(k), 2hat(i) + hat(j)- hat(k) and lamda hat(i) - hat(j)+ lamda (k) are coplanar

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

Prove that [hat(i)hat(j)hat(k)]=1, and [hat(i)hat(k)hat(j)]=-1 .

If a hat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), and hat(i)+hat(j)+c hat(k) are coplanar vectors, then what is the value of a+b+c-abc?

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Show that the following points whose position vectors are given are collinear : (i) 5 hat(i) + 5 hat(k), 2 hat(i) + hat(j) + 3 hat(k) and - 4 hat(i) + 3 hat(j) - hat(k) (ii) - 2 hat(i) + 3 hat(j) + 5 hat(k), hat(i) + 2 hat(j) + 3 hat(k) and 7 hat(i) - hat(k) .

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(a)*hat(i)=4, then (overline(a)timeshat(j))*(2hat(j)-3hat(k...

    Text Solution

    |

  2. If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3...

    Text Solution

    |

  3. [[hat(i), hat(j), hat(k)]]+[[hat(k), hat(j), hat(i)]]+[[hat(j), hatk, ...

    Text Solution

    |

  4. If overline(u)=hat(i)-2hat(j)+hat(k), overline(v)=3hat(i)+hat(k), over...

    Text Solution

    |

  5. If overline(u)=hat(i)-2hat(j)+hat(k), overline(v)=3hat(i)+hat(k), over...

    Text Solution

    |

  6. If overline(a)=hat(i)+5hat(k), overline(b)=2hat(i)+3hat(k), overline(c...

    Text Solution

    |

  7. If overline(u)=-hat(i)-2hat(j)+hat(k), overline(r)=3hat(i)+hat(k), ove...

    Text Solution

    |

  8. If overline(c)=3overline(a)-2overline(b), then [[overline(a), overline...

    Text Solution

    |

  9. [[overline(a), overline(b), overline(a)timesoverline(b)]]=

    Text Solution

    |

  10. Which of the following is trues?

    Text Solution

    |

  11. [[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overli...

    Text Solution

    |

  12. If overline(a), overline(b) and overline(c) are unit coplanar vectors,...

    Text Solution

    |

  13. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  14. [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overli...

    Text Solution

    |

  15. [[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overli...

    Text Solution

    |

  16. overline(a)*((overline(a)+overline(b)+overline(c))times(overline(b)+ov...

    Text Solution

    |

  17. Value of ((overline(a)+overline(b)+overline(c))times(overline(b)-overl...

    Text Solution

    |

  18. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  19. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  20. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |