Home
Class 12
MATHS
[[overline(a), overline(b), overline(a)t...

`[[overline(a), overline(b), overline(a)timesoverline(b)]]=`

A

`|overline(a)timesoverline(b)|`

B

`|overline(a)timesoverline(b)|^(2)`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the scalar triple product \([ \overline{a}, \overline{b}, \overline{a} \times \overline{b} ]\), we can follow these steps: ### Step 1: Understand the Scalar Triple Product The scalar triple product of three vectors \(\overline{a}\), \(\overline{b}\), and \(\overline{c}\) is given by the formula: \[ [\overline{a}, \overline{b}, \overline{c}] = \overline{a} \cdot (\overline{b} \times \overline{c}) \] In this case, we have \(\overline{c} = \overline{a} \times \overline{b}\). ### Step 2: Substitute the Cross Product We can substitute \(\overline{c}\) into the scalar triple product: \[ [\overline{a}, \overline{b}, \overline{a} \times \overline{b}] = \overline{a} \cdot (\overline{b} \times (\overline{a} \times \overline{b})) \] ### Step 3: Use the Vector Triple Product Identity We can apply the vector triple product identity: \[ \overline{x} \times (\overline{y} \times \overline{z}) = (\overline{x} \cdot \overline{z}) \overline{y} - (\overline{x} \cdot \overline{y}) \overline{z} \] Here, let \(\overline{x} = \overline{a}\), \(\overline{y} = \overline{b}\), and \(\overline{z} = \overline{b}\): \[ \overline{b} \times (\overline{a} \times \overline{b}) = (\overline{b} \cdot \overline{b}) \overline{a} - (\overline{b} \cdot \overline{a}) \overline{b} \] ### Step 4: Simplify the Expression Now substituting back into our expression: \[ [\overline{a}, \overline{b}, \overline{a} \times \overline{b}] = \overline{a} \cdot \left( \|\overline{b}\|^2 \overline{a} - (\overline{a} \cdot \overline{b}) \overline{b} \right) \] This expands to: \[ \overline{a} \cdot \|\overline{b}\|^2 \overline{a} - \overline{a} \cdot ((\overline{a} \cdot \overline{b}) \overline{b}) \] ### Step 5: Calculate Each Dot Product The first term simplifies to: \[ \|\overline{b}\|^2 (\overline{a} \cdot \overline{a}) = \|\overline{b}\|^2 \|\overline{a}\|^2 \] The second term simplifies to: \[ (\overline{a} \cdot \overline{b}) (\overline{a} \cdot \overline{b}) = (\overline{a} \cdot \overline{b})^2 \] ### Step 6: Combine the Results Thus, we have: \[ [\overline{a}, \overline{b}, \overline{a} \times \overline{b}] = \|\overline{b}\|^2 \|\overline{a}\|^2 - (\overline{a} \cdot \overline{b})^2 \] ### Final Result The final result of the scalar triple product is: \[ [\overline{a}, \overline{b}, \overline{a} \times \overline{b}] = \|\overline{b}\|^2 \|\overline{a}\|^2 - (\overline{a} \cdot \overline{b})^2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NIKITA PUBLICATION|Exercise MCQs|404 Videos

Similar Questions

Explore conceptually related problems

For non-zero vectors overline(a), overline(b), overline(c), (overline(a)timesoverline(b))*overline(c)=|overline(a)||overline(b)||overline(c)| holds, iff

If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , where overline(a), overline(b), overline(c) are three non-coplanar vectors, then (overline(a)-overline(b)-overline(c))*overline(p)-(overline(b)-overline(c)-overline(a))*overline(q)-(overline(c)-overline(a)-overline(b))*overline(r)=

If overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , where overline(a), overline(b), overline(c) are three non-coplanar vectors, then (overline(a)+overline(b)+overline(c))*(overline(p)+overline(q)+overline(r))=

If overline(a),overline(b), overline(c) are three non-coplanar vectors and overline(p), overline(q), overline(r) are vectors defined by the relations overline(p)=(overline(b)timesoverline(c))/([[overline(a), overline(b), overline(c)]]), overline(q)=(overline(c)timesoverline(a))/([[overline(a), overline(b), overline(c)]]), overline(r)=(overline(a)timesoverline(b))/([[overline(a), overline(b), overline(c)]]) , then (overline(a)+overline(b))*overline(p)+(overline(b)+overline(c))*overline(q)+(overline(c)+overline(a))*overline(r)=

If overline(u)=hat(i)-2hat(j)+hat(k), overline(v)=3hat(i)+hat(k), overline(w)=hat(j)-hat(k) , then [[overline(u)timesoverline(v), overline(u)timesoverline(w),overline(v)timesoverline(w)]]=

If [[2overline(a)+overline(b), overline(c), overline(d)]]=lambda[[overline(a), overline(c), overline(d)]]+mu[[overline(b), overline(c), overline(d)]], then lambda+mu= ________

If [[3overline(a)+5overline(b), overline(c), overline(d)]]=p[[overline(a), overline(c), overline(d)]]+q[[overline(b), overline(c), overline(d)]] , then p+q=

If overline(a), overline(b) and overline(c) are three non-coplanar vectors, then [[overline(a)+overline(b)+overline(c), overline(a)-overline(c), overline(a)-overline(b)]]=

If overline(a), overline(b) and overline(c) are three non-coplanar vectors, then (overline(a)+overline(b))*((overline(a)+overline(c))timesoverline(b))=

NIKITA PUBLICATION-VECTOR-MULTIPLE CHOICE QUESTIONS
  1. If overline(u)=-hat(i)-2hat(j)+hat(k), overline(r)=3hat(i)+hat(k), ove...

    Text Solution

    |

  2. If overline(c)=3overline(a)-2overline(b), then [[overline(a), overline...

    Text Solution

    |

  3. [[overline(a), overline(b), overline(a)timesoverline(b)]]=

    Text Solution

    |

  4. Which of the following is trues?

    Text Solution

    |

  5. [[overline(a)-overline(b), overline(b)-overline(c), overline(c)-overli...

    Text Solution

    |

  6. If overline(a), overline(b) and overline(c) are unit coplanar vectors,...

    Text Solution

    |

  7. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  8. [[overline(a)+overline(b), overline(b)+overline(c), overline(c)+overli...

    Text Solution

    |

  9. [[overline(a), overline(b)+overline(c), overline(c)+overline(b)+overli...

    Text Solution

    |

  10. overline(a)*((overline(a)+overline(b)+overline(c))times(overline(b)+ov...

    Text Solution

    |

  11. Value of ((overline(a)+overline(b)+overline(c))times(overline(b)-overl...

    Text Solution

    |

  12. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  13. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  14. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  15. If overline(a), overline(b) and overline(c) are three non-coplanar vec...

    Text Solution

    |

  16. If overline(a), overline(b) and overline(c) are three coplanar vectors...

    Text Solution

    |

  17. If overline(u), overline(v), overline(w) are three non-coplanar vector...

    Text Solution

    |

  18. If four points A(overline(a)), B(overline(b)), C(overline(c)) and D(ov...

    Text Solution

    |

  19. For vectors overline(a) and overline(b) and overline(a)+overline(b)ne=...

    Text Solution

    |

  20. If overline(a), overline(b), overline(c) are non-coplanar and m, n are...

    Text Solution

    |